分析 由$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$知数列{$\frac{1}{{a}_{n}}$}是等差数列,从而解得.
解答 解:∵$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$(n≥2),
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,
又∵$\frac{1}{{a}_{1}}$=1,$\frac{1}{{a}_{2}}$=2,
∴$\frac{1}{{a}_{n}}$=n,
∴a2015=$\frac{1}{2015}$,
故答案为:$\frac{1}{2015}$.
点评 本题考查了等差数列的判断及构造法的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{y}^{2}}{3}$-x2=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | y2-$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com