精英家教网 > 高中数学 > 题目详情
12.阅读程序框图(如图),完成以下问题:
(Ⅰ)写出y与x的函数关系式y=f(x),并求f[f($\frac{1}{10}$)]的值;
(Ⅱ)在区间[0,100]上随机取一个数x,求f(x)∈[1,3]的概率.

分析 (Ⅰ)由题意可知:f(x)=$\left\{\begin{array}{l}{lgx}&{x>0}\\{{2}^{-x}-1}&{x≤0}\end{array}\right.$,f($\frac{1}{10}$)=-1,f[f($\frac{1}{10}$)]=f(-1)=2-1=1;
(Ⅱ)1≤f(x)≤3,-2≤x≤-1或10≤x≤1000,根据概率公式,即可求得$P=\frac{100-10}{100}=\frac{9}{10}$.

解答 解:(Ⅰ)由程序框图可知:f(x)=$\left\{\begin{array}{l}{lgx}&{x>0}\\{{2}^{-x}-1}&{x≤0}\end{array}\right.$;
∴f($\frac{1}{10}$)=-1,
f[f($\frac{1}{10}$)]=f(-1)=2-1=1
∴$f[f(\frac{1}{10})]$=1;
(Ⅱ)解不等式1≤f(x)≤3
得-2≤x≤-1或10≤x≤1000,
故所求$P=\frac{100-10}{100}=\frac{9}{10}$.

点评 本题考查程序框图的应用,求分段函数及复合函数的值,几何概型的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知tanθ=-$\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.
(2)设f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+cos(-θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(2π-θ)}}$,求f($\frac{π}{3}$).
(3)函数y=cos2x-3cosx+2的最小值是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a2lnx-x2+ax(a≠0),g(x)=(m-1)x2+2mx-1.
(1)求函数f(x)的单调区间;
(2)若a=1时,关于x的不等式f(x)≤g(x)恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=2an-n+1,n∈N*,a1=3,
(1)求a2-2,a3-3,a4-4的值;
(2)根据(1)的结果试猜测{an-n}是否为等比数列,证明你的结论,并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,长方体ABCD-A1B1C1D1中,已知AB=BC=2,AA1=1,线段AC1的三个视图所在的直线所成的最小角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+y=1,则xy+$\frac{1}{xy}$的取值范围$[\frac{17}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f:x→x2是集合M到集合N的映射,若N={4,0,9},则M不可能是(  )
A.{0}B.{2,3}C.{0,1,2}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C的顶点在坐标原点O,焦点为F(1,0),经过点F的直线l与抛物线C相交于A、B两点.
(1)求抛物线C的标准方程;
(2)若△AOB的面积为4,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在等差数列中,a2=3,a5=6,则公差d=(  )
A.-1B.1C.2D.3

查看答案和解析>>

同步练习册答案