15£®ÔÚ¶ÔÈËÃǵÄÐÝÏз½Ê½µÄÒ»´Îµ÷²éÖУ¬¹²µ÷²éÁË124ÈË£¬ÆäÖÐÅ®ÐÔ70ÈË£¬ÄÐÐÔ54ÈË£®Å®ÐÔÖÐÓÐ43ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÁíÍâ27ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇÔ˶¯£»ÄÐÐÔÖÐÓÐ21ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÁíÍâ33ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇÔ˶¯£®
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2µÄÁÐÁª±í£»
£¨2£©ÊÔÅжÏÄÜ·ñÓÐ97.5%µÄ°ÑÎÕÈÏΪ¡°ÐÝÏз½Ê½ÓëÐÔ±ðÓйء±
²Î¿¼¹«Ê½£º1£®¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ
P£¨K2¡Ýk£©0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
2.${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{c+d}£©}}$£¨ ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬n=124£¬a+b=70£¬c+d=54£¬a=43£¬b=27£»c=21£¬d=33£¬ÌîдÁÐÁª±í£»
£¨2£©¸ù¾ÝÁÐÁª±íÖÐËù¸øµÄÊý¾Ý¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÖÐÊý¾Ý£¬Ìîд2¡Á2ÁÐÁª±íÈçÏ£»

¿´µçÊÓÔ˶¯×ܼÆ
Å®ÐÔ432770
ÄÐÐÔ213354
×ܼÆ6460124
£¨2£©¼ÆËã${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{c+d}£©}}$
=$\frac{124{¡Á£¨43¡Á33-21¡Á27£©}^{2}}{70¡Á54¡Á64¡Á60}$¡Ö6.201£¾5.024£¬
ËùÒÔÓÐ97.5%µÄ°ÑÎÕÈÏΪ¡°ÐÝÏз½Ê½ÓëÐÔ±ðÓйء±£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=lnx-kx+k£®
£¨¢ñ£©Èôf£¨x£©¡Ý0ÓÐΨһ½â£¬ÇóʵÊýkµÄÖµ£»
£¨¢ò£©Ö¤Ã÷£ºµ±a¡Ü1ʱ£¬x£¨f£¨x£©+kx-k£©£¼ex-ax2-1£®
£¨¸½£ºln2¡Ö0.69£¬ln3¡Ö1.10£¬${e^{\frac{3}{2}}}¡Ö4.48$£¬e2¡Ö7.39£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB=AC=2£¬¡ÏBAC=$\frac{¦Ð}{3}$£¬BB1-=3£¬Ôò²àÀâBB1ËùÔÚÖ±ÏßÓëÆ½ÃæAB1C1Ëù³ÉµÄ½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{12}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{3}$D£®$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µã£¨n£¬Sn+3£©£¨n¡ÊN*£©ÔÚº¯Êýy=3¡Á2xµÄͼÏóÉÏ£¬µÈ±ÈÊýÁÐ{bn}Âú×ãbn+bn+1=an£¨n¡ÊN*£©£®ÆäǰnÏîºÍΪTn£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Sn=2TnB£®Tn=2bn+1C£®Tn£¾anD£®Tn£¼bn+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬E£¬F£¬G£¬H·Ö±ðΪÀâAA1£¬B1C1£¬C1D1£¬DD1µÄÖе㣬ÔòÏÂÁÐÖ±ÏßÖÐÓëÖ±ÏßEFÏཻµÄÊÇ£¨¡¡¡¡£©
A£®Ö±ÏßCC1B£®Ö±ÏßC1D1C£®Ö±ÏßHC1D£®Ö±ÏßGH

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-x+alnx£¨a£¾0£©ÓÐÁ½¸ö¼«Öµµãx1¡¢x2£¬ÇÒx1£¼x2£®
£¨1£©ÇóaµÄȡֵ·¶Î§£»
£¨2£©Ö¤Ã÷£ºf£¨x1£©+f£¨x2£©£¾$\frac{-3-2ln2}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªaΪʵÊý£¬ÇÒº¯Êýf£¨x£©=£¨x2-4£©£¨x-a£©£¬f'£¨-1£©=0£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ[-2£¬2]ÉϵÄ×î´óÖµ¡¢×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=sin¦Á\\ y=cos2¦Á\end{array}\right.$£¬£¨$¦Á¡Ê[{0£¬\frac{¦Ð}{2}}]$£¬¦ÁΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦È=-\frac{¦Ð}{6}$£¬ÇóÇúÏßC1ÓëÇúÏßC2µÄ½»µãµÄÖ±½Ç×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÔÍÖÔ²$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1µÄ½¹µãΪ½¹µãµÄË«ÇúÏߣ¬Èç¹ûÀëÐÄÂÊΪ2£¬ÄÇô¸ÃÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À$\sqrt{3}$x£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸