精英家教网 > 高中数学 > 题目详情
11.如果一个圆过△ABC的顶点B和C,并且分别交AB,AC于点D和点E.求证:$\frac{AD}{AC}$=$\frac{AE}{AB}$.

分析 利用圆内接四边形的性质,证明△ADE∽△ACB,即可证明结论.

解答 证明:如图所示,连接DE,则∠ADE=∠C,
∵∠A=∠A,
∴△ADE∽△ACB,
∴$\frac{AD}{AC}$=$\frac{AE}{AB}$.

点评 本题考查圆内接四边形的性质,考查学生分析解决问题的能力,证明△ADE∽△ACB是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某中学共有女生2000人,为了了解学生体质健康状况,随机抽取100名女生进行体质监测,将她们的体重(单位:kg)数据加以统计,得到如图所示的频率分布直方图,则直方图中x的值为0.024;试估计该校体重在[55,70)的女生有1000人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F为抛物线y2=4x的焦点,A是抛物线上一点,B是圆C:(x+3)2+(y+3)2=4上任意一点,设点A到y轴的距离为m,则m+|AB|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC内有m个不同的点(其中任3个点不共线),这m个点加上三角形的3个顶共计(m+3)个点,以这(m+3)个点为顶点,问:
(1)最多可以构成多少个不同的三角形;
(2)利用剪刀最多可以剪出多少个三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若曲线f(x)存在垂直于y轴的切线,且f′(x)=2x2+3-2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知一个正三棱锥P-ABC的正视图如图所示,若AC=BC=$\frac{3}{2}$,PC=$\sqrt{6}$,则此正三棱锥的表面积为9$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数a、b满足0<a<1,0<b<1,求证:$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$≥2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知AB为圆O的直径,C为圆O上一点,AD和过C点的切线互相垂直垂足为D,若∠BAC=35°,则∠CAD=35°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=2py(p>0)的焦点为F,点P是直线y=x与抛物线C在第一象限的交点,且|PF|=5.
(1)求抛物线C的方程;
(2)设直线l:y=kx+m与抛物线C有唯一公共点M,且直线l与抛物线的准线交于点Q,试探究,在坐标平面内是否存在点N,使得以MQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案