分析 建立坐标系,正方形的边长为1,则O(0,0),A(1,0),B(1,1),C(0,1),正方形内取点D(a,b),a、b满足0<a<1,0<b<1,$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$表示OD+AD+CD+BD,利用OD+BD≥OB,AD+CD≥AC,即可证明结论.
解答
证明:建立如图所示的坐标系,正方形的边长为1,则O(0,0),A(1,0),B(1,1),C(0,1),正方形内取点D(a,b),a、b满足0<a<1,0<b<1,
$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$表示OD+AD+CD+BD,利用OD+BD≥OB,AD+CD≥AC,
可得OD+AD+CD+BD≥OB+AC=2$\sqrt{2}$,
∴$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$≥2$\sqrt{2}$.
点评 本题考查不等式的证明,考查构造法的运用,正确利用几何意义是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 内心 | B. | 外心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-e | B. | e-1 | C. | -1-e | D. | e+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{\sqrt{10}}{5}$,$\frac{3\sqrt{10}}{5}$) | B. | (-$\frac{\sqrt{10}}{5}$,-$\frac{3\sqrt{10}}{5}$) | C. | ($\frac{\sqrt{10}}{5}$,-$\frac{3\sqrt{10}}{5}$) | D. | (-$\frac{\sqrt{10}}{5}$,$\frac{3\sqrt{10}}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com