精英家教网 > 高中数学 > 题目详情
20.设复数ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则z=1+ω+ω2+…+ω2012的值为0.

分析 由ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,ω3=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)(-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)=1,ω2013=1由等比数列的前n项和公式可得z=1+ω+ω2+…+ω2012=$\frac{1-{ω}^{2013}}{1-ω}$计算可得答案

解答 解:∵ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,
∴ω2=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i,
∴ω3=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)(-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)=1,
∴ω2013=(ω3671=1,
∴z=1+ω+ω2+…+ω2012=$\frac{1-{ω}^{2013}}{1-ω}$=0,
故答案为:O.

点评 本题为复数的运算和等比数列的前n项和公式的应用,化简复数的代数形式和等比数列的前n项和的应用是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,且an=2n-1,数列{bn}满足2$\sum_{i=1}^{n}i•{b}_{i}$-2n=Sn,若bn≥λ对任意的n∈N*恒成立,则实数λ的取值范围为(-∞,1]..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|=2$\sqrt{3}$,若平面向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$|=|$\overrightarrow{c}-\overrightarrow{b}$|.则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角(锐角)为$\frac{π}{6}$;若非零平面向量$\overrightarrow{c}$-$\overrightarrow{a}$与$\overrightarrow{c}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则|$\overrightarrow{c}$|的取值范围是($2\sqrt{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an},其通项公式an=nsin2$\frac{n}{2}$π-ncos2$\frac{n}{2}$π,其前n项和为Sn,求S2014+S2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.角α的终边过点M(-4t,3t)(t≠0),则sinα的值是(  )
A.$\frac{3}{5}$B.-$\frac{3}{4}$C.$±\frac{3}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我县某种蔬菜从二月一日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:
时间t50110250
种植成本Q150108150
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt.
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x+y=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{5}{6}π$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若z(1+i)=2+i(i是虚数单位),则z=(  )
A.$\frac{3}{2}+\frac{i}{2}$B.$\frac{3}{2}-\frac{i}{2}$C.$-\frac{3}{2}-\frac{i}{2}$D.$-\frac{3}{2}+\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$sinα=\frac{3}{5}$,则$sin(\frac{π}{2}+2α)$=(  )
A.$-\frac{12}{25}$B.$\frac{7}{25}$C.$\frac{12}{25}$D.$-\frac{7}{25}$

查看答案和解析>>

同步练习册答案