精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若,对定义域内任意x,均有恒成立,求实数a的取值范围?
(Ⅲ)证明:对任意的正整数恒成立。
(Ⅰ);(Ⅱ);(Ⅲ)详见解析.

试题分析:(Ⅰ)当时,求函数的单调区间,首先确定定义域,可通过单调性的定义,或求导确定单调区间,由于,含有对数函数,可通过求导来确定单调区间,对函数求导得,由此令,解出就能求出函数的单调区间;(Ⅱ)若,对定义域内任意,均有恒成立,求实数的取值范围,而,对定义域内任意,均有恒成立,属于恒成立问题,解这一类题,常常采用含有参数的放到不等式的一边,不含参数(即含)的放到不等式的另一边,转化为函数的最值问题,但此题用此法比较麻烦,可考虑求其最小值,让最小值大于等于零即可,因此对函数求导,利用导数确定最小值,从而求出的取值范围;(Ⅲ)由(Ⅱ)知,当时,,当且仅当时,等号成立,这个不等式等价于,即,由此对任意的正整数,不等式恒成立.
试题解析:(Ⅰ)定义域为(0,+∞),,所以(4分)
(Ⅱ),当时,上递减,在上递增,,当时, 不可能成立,综上;(9分)
(Ⅲ)令相加得到
得证。(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 求的单调区间;
(Ⅱ) 求所有的实数,使得不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,
(1)若对任意的实数,函数的图象在处的切线斜率总相等,求的值;
(2)若,对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设点为函数的图象上任意一点,若曲线在点处的切线的斜率恒大于
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)证明:当
(Ⅱ)设当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调递增区间;
(2)若对任意,函数上都有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,记的大小关系是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案