17.某地最近十年粮食需求量逐年上升,下表是部分统计数据:
| 年份x | 2006 | 2008 | 2010 | 2012 | 2014 |
| 需求量y(万吨) | 240 | 255 | 260 | 265 | 280 |
(Ⅰ)求出线性相关系数r,并进行相关性检验;
(Ⅱ)如果x,y线性相关,利用所给数据求x,y之间的回归直线方程$y=\hat bx+\hat a$;
(Ⅲ)利用(Ⅱ)中所求出的直线方程预测该地2015年的粮食需求量.
(参考公式:线性回归方程系数公式$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\hat a=\bar y-\hat b\bar x$,
线性相关系数公式$r=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sqrt{(\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2})(\sum_{i=1}^n{{y_i}^2-n{{\overline y}^2}})}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sqrt{(\sum_{i=1}^n{{{({x_i}-\overline x)}^2})(\sum_{i=1}^n{{{({y_i}-\overline y)}^2})}}}}}$,
相关性检验临界值表:
| P(K2≥k0) | 小概率 |
| 0.05 | 0.01 |
| k0 | 0.878 | 0.959 |