分析 (1)求出f(x)的导数,求得切线的斜率,解方程可得m;
(2)f(x)>g(x)-x3即为ex+m>ln(x+1)+2.由函数y=ex-x-1,求得最小值,可得ex≥x+1,则ex+m>x+m+1,再由h(x)=x+m+1-ln(x+1)-2=x+m-ln(x+1)-1,求出导数,求得最小值,由条件即可得证.
解答 解:(1)函数f(x)=ex+m-x3的导数为f′(x)=ex+m-3x2,
在点(0,f(0))处的切线斜率为k=em=1,
解得m=0;
(2)证明:f(x)>g(x)-x3即为
ex+m>ln(x+1)+2.
由y=ex-x-1的导数为y′=ex-1,
当x>0时,y′>0,函数递增;当x<0时,y′<0,函数递减.
即有x=0处取得极小值,也为最小值0.
即有ex≥x+1,则ex+m≥x+m+1,
由h(x)=x+m+1-ln(x+1)-2=x+m-ln(x+1)-1,
h′(x)=1-$\frac{1}{x+1}$,当x>0时,h′(x)>0,h(x)递增;
-1<x<0时,h′(x)<0,h(x)递减.
即有x=0处取得最小值,且为m-1,
当m≥1时,即有h(x)≥m-1≥0,
即x+m+1≥ln(x+1)+2,
则有f(x)>g(x)-x3成立.
点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式的证明,注意运用构造法,以及不等式的传递性,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 命题“若p,则q”与命题“若非q,则非p”互为逆否命题 | |
| B. | 命题p:?x∈R,e|x|≥1,命题q:?x∈R,x2+x+1<0,则p∨q为真 | |
| C. | “若x为y=f(x)的极值点,则f′(x)=0”的逆命题为真命题 | |
| D. | 若“p且q”为真命题,则p、q均为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22$\sqrt{2}$ | B. | 44$\sqrt{2}$ | C. | 22 | D. | 44 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 数列1,2,6,18,… | |
| B. | 常数列0,0,0,0,… | |
| C. | 在数列{an}中,已知$\frac{{a}_{2}}{{a}_{1}}$=2,$\frac{{a}_{3}}{{a}_{2}}$=2 | |
| D. | 在数列{an}中,$\frac{{a}_{n+1}}{{a}_{n}}$=q(其中q为非零常数,n∈N*) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com