精英家教网 > 高中数学 > 题目详情
5.求下列函数的定义域:
(1)y=$\frac{1}{lo{g}_{3}(3x-2)}$;
(2)y=log(2x-1)(-4x+8).

分析 通过对数的真数与底数的范围.列出不等式求解函数的值域、

解答 解:(1)y=$\frac{1}{lo{g}_{3}(3x-2)}$;函数有意义可得$\left\{\begin{array}{l}3x-2>0\\ 3x-2≠1\end{array}\right.$,解得:x$>\frac{2}{3}$且x≠1,
函数的定义域为:{x|x$>\frac{2}{3}$且x≠1}.
(2)函数y=log(2x-1)(-4x+8)有意义,可得:$\left\{\begin{array}{l}8-4x>0\\ 2x-1≠1\\ 2x-1>0\end{array}\right.$.解得:$\frac{1}{2}<x<1$或1<x<2.
函数的定义域为:{x|$\frac{1}{2}<x<1$或1<x<2}.

点评 本题考查函数的定义域的求法,对数函数的定义域,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知奇函数f(x)在(0,+∞)上是增函数,且f(2)=0,则不等式x[f(x)-f(-x)]<0的解集为(  )
A.{x|-2<x<0或x>2}B.{x|x<-2或0<x<2}C.{x|x<-2或x>2}D.{x|-2<x<0或0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥1}\\{2x,x<1}\end{array}\right.$,求f(-2),f(2),f(1+x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4)、(2,0)、(6,4).
(1)求f[f(0)]的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\root{3}{9}$$+\sqrt{27}$)÷$\root{4}{9}$的值是$\root{6}{3}+3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1+x)+(1+x)2+…+(1+x)n的所有二项式的各项系数和是(  )
A.2n+1B.2n+1+1C.2n+1-1D.2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线C以双曲线$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}$=1的右焦点F为焦点,曲线C上的点到焦点F的距离与到直线x=-2的距离相等,则曲线C上的任意一点P到y轴的距离与到直线x-y+4=0的距离和的最小值为(  )
A.3$\sqrt{2}$B.3$\sqrt{2}$-1C.3$\sqrt{2}$+2D.3$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=-x2+3x,直线l1:x=t和l2:x=t+1(其中0≤t≤2,t为常数),若直线l1,l2,x轴与函数y=f(x)的图象所围成的封闭图形的面积为S,则S的最大值为(  )
A.2B.$\frac{11}{6}$C.$\frac{13}{6}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知某几何体由正方体和直三棱柱组成,其三视图和直观图如图所示.记直观图中从点B出发沿棱柱的侧面到达PD1的中点R的最短距离为d,则d2=$\frac{25}{2}+6\sqrt{2}$.

查看答案和解析>>

同步练习册答案