分析 (1)由等差数列前n项和公式列出方程组求出首项与公差,由此能求出Sn与bn;由bn=$\left\{\begin{array}{l}{{T}_{1},n=1}\\{{T}_{n}-{T}_{n-1},n≥2}\end{array}\right.$,能求出数列{bn}的通项公式.
(2)推导出Snbn=(n2+n)•3n-1,2Tnan=2n•(3n-1),由此利用作差法能比较Snbn与2Tnan的大小.
解答 解:(1)设等差数列{an}的首项为a1,公差为d,由已知可得:$\left\{{\begin{array}{l}{5{a_1}+\frac{5×4}{2}d=30}\\{10{a_1}+\frac{10×9}{2}d=110}\end{array}}\right.$,
解得$\left\{{\begin{array}{l}{{a_1}=2}\\{d=2}\end{array}}\right.$,
∴an=2+(n-1)×2=2n,${S_n}=\frac{n(2+2n)}{2}={n^2}+n$.
对数列{bn},由已知有b2-2T1=1,即b2=2b1+1=3,
∴b2=3b1,①
又由已知bn+1-2Tn=1,可得bn-2Tn-1=1(n≥2,n∈N*),
两式相减得bn+1-bn-2(Tn-Tn-1)=0,即bn+1-bn-2bn=0(n≥2,n∈N*),
整理得bn+1=3bn(n≥2,n∈N*),
结合①得$\frac{{{b_{n+1}}}}{b_n}=3$(常数),n∈N*,
∴数列{bn}是以b1=1为首项,3为公比的等比数列,
∴${b_n}={3^{n-1}}$.
(2)$2{T_n}={b_{n+1}}-1={3^n}-1$,
∴${S_n}{b_n}=({n^2}+n)•{3^{n-1}}$,${T_n}{a_n}=2n•({3^n}-1)$,
于是${S_n}{b_n}-2{T_n}{a_n}=({n^2}+n)•{3^{n-1}}-2n•({3^n}-1)=n[{3^{n-1}}(n-5)+2]$,
显然当n≤4(n∈N*)时,Snbn-2Tnan<0,即Snbn<2Tnan;
当n≥5(n∈N*)时,Snbn-2Tnan>0,即Snbn>2Tnan,
∴当n≤4(n∈N*)时,Snbn<2Tnan;当n≥5(n∈N*)时,Snbn>2Tnan.
点评 本题考查数列的通项公式、前n项和公式的求法,考查两个数的大小的求法,是中档题,解题时要认真审题,注意作差法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinα)>f(cosβ) | B. | f(sinα)>f(sinβ) | C. | f(cosα)>f(cosβ) | D. | f(cosα)>f(sinβ) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | ln2 | C. | 1 | D. | $\root{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com