精英家教网 > 高中数学 > 题目详情
11.若偶函数f(x)在区间[-1,0)上为减函数,α,β为任意一个锐角三角形的两个内角,则有(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(cosα)>f(cosβ)D.f(cosα)>f(sinβ)

分析 利用偶函数的对称性可得函数在[0,1]单调递增,由α、β为锐角三角形的内角可得,α+β>$\frac{π}{2}$⇒α>$\frac{π}{2}$-β,β>$\frac{π}{2}$-α,1>sinα>cosβ>0,结合函数的单调性可得结果

解答 解:∵偶函数f(x)在区间[-1,0]上是减函数,
∴f(x)在区间[0,1]上为增函数.
又由α、β是锐角三角形的两个内角,
∴α+β>$\frac{π}{2}$⇒α>$\frac{π}{2}$-β,β>$\frac{π}{2}$-α,1>sinα>cosβ>0,.
∴f(sinα)>f(cosβ).
故选:A

点评 本题主要考查了偶函数的性质:在对称区间上的单调性相反,(类似的性质奇函数在对称区间上的单调性相同);由锐角三角形的条件找到α+β>$\frac{π}{2}$⇒α>$\frac{π}{2}$-β,β>$\frac{π}{2}$-α,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若点P(1,1)在不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny>1}\end{array}\right.$表示的平面区域内,则z=m+2n的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数(3i-1)i的虚部是(  )
A.1B.-3C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三棱锥P-ABC中,PA,PB,PC两两垂直,PA=PB=2,其外接球的表面积为24π,则外接球球心到平面ABC的距离为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数y=sinx的图象上每个点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,再将所得图象向左平移$\frac{π}{6}$个单位后,得到函数f(x)的图象,则函数f(x)的解析式为(  )
A.$f(x)=sin({2x+\frac{π}{3}})$B.$f(x)=sin({2x+\frac{π}{6}})$C.$f(x)=sin({\frac{1}{2}x+\frac{π}{3}})$D.$f(x)=sin({\frac{1}{2}x+\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.角-558°的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有且只有一个正实根,则实数k的取值范围是$[1,+∞)∪\{\frac{1}{2}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的前n项和Sn满足:S5=30,S10=110,数列{bn}的前n项和Tn满足:b1=1,bn+1-2Tn=1.
(1)求Sn与bn
(2)比较Snbn与2Tnan的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)是定义在(0,+∞)上的增函数,f(2)=1,且对任意的x,y>0满足f(x)+f(y)=f(xy).
(1)计算f(1),f(4);
(2)解不等式f(x)-f(x-3)≤2.

查看答案和解析>>

同步练习册答案