精英家教网 > 高中数学 > 题目详情
1.若点P(1,1)在不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny>1}\end{array}\right.$表示的平面区域内,则z=m+2n的最大值为4.

分析 根据点与不等式组的关系建立关于m,n的不等式关系,利用目标函数的几何意义分别进行求解即可.

解答 解:∵点P(1,1)在不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny>1}\end{array}\right.$表示的平面区域内
∴$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n>1}\end{array}\right.$作出不等式组对应的平面区域如图,
设z=m+2n,则m=-2n+z,
平移直线m=-2n+z,由图象,知当直线m=-2n+z经过A(2,0)时,直线在y轴的截距最大,此时z最大,
最大值z=0+2×2=4.
故答案为:4.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知2sinα+cosα=0,求2sin2α-3sinαcosα-5cos2α=$-\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x2-4x+3=0},B={x|x2-5x<0,x∈N},则满足条件A⊆C⊆B的集合C的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义$a⊕b=\left\{\begin{array}{l}a,a≥b\\ b,a<b\end{array}\right.$,已知函数f(x)=sinx⊕cosx,给出下列四个结论:
(1)该函数的值域为[-1,1];
(2)f(x)是周期函数,最小正周期为π;
(3)当且仅当$2kπ+π<x<2kπ+\frac{3π}{2}(k∈Z)$时,f(x)<0;
(4)当且仅当$x=2kπ+\frac{π}{2}(k∈Z)$时,该函数取得最大值.其中正确的结论是(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lg(2+x)+lg(2-x)
(1)求函数f(x)的定义域;
(2)记函数g(x)=10f(x)+2x,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,求点(2x+3-x2,$\frac{2x-3}{2-x}$)在第四象限的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.终边在第三象限的角的集合可以表示为{α|180°+k•360°<α<270°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(ωx+φ),(ω>0,0<φ<π)为偶函数,且A(x1,1),B(x2,-1),|x1-x2|的最小值是$\frac{π}{2}$.
(I)求f(x);
(Ⅱ)用五点法画f(x)一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若偶函数f(x)在区间[-1,0)上为减函数,α,β为任意一个锐角三角形的两个内角,则有(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(cosα)>f(cosβ)D.f(cosα)>f(sinβ)

查看答案和解析>>

同步练习册答案