精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|-6≤x≤8},B={x|x≤m},若A∪B≠B且A∩B≠∅,则m的取值范围是[-6,8).

分析 根据集合的并集和集合的交集得到关于m的不等式组,解出即可.

解答 解:A={x|-6≤x≤8},B={x|x≤m},
若A∪B≠B且A∩B≠∅,
则$\left\{\begin{array}{l}{m≥-6}\\{m<8}\end{array}\right.$,
故答案为:[-6,8).

点评 本题考查了集合的交集、并集的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2${\;}^{{x^2}-2x-3}}$.
(Ⅰ)求函数f(x)的定义域和值域;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两直线l1,l2的方程分别为x+y$\sqrt{1-cosθ}$+b=0和xsinθ+y$\sqrt{1+cosθ}$-a=0(a,b为实常数),θ为第三象限角,则两直线l1,l2的位置关系是(  )
A.相交且垂直B.相交但不垂直C.平行D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线x+$\sqrt{3}$y+2=0与直线x+1=0的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设集合A={0,2,4,6,8,10},B={4,8},则∁AB={0,2,6,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F1,F2为椭圆C1:$\frac{x^2}{a^2}$+$\frac{y{\;}^{2}}{b^2}$=1(a>b>0)与双曲线C2的公共的左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,若椭圆C1的离心率e∈[${\frac{3}{8}$,$\frac{4}{9}}$].则双曲线C2的离心率的取值范围是(  )
A.$[{\frac{3}{2},4}]$B.$[{\frac{3}{2},+∞})$C.(1,4]D.$[{\frac{5}{4},\frac{5}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图:曲线C1与C2分别是y=xm,y=xn在第一象限的图象,则(  )
 
A.n<m<0B.m<n<0C.n>m>0D.m>n>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=1-$\frac{a}{{3}^{x}+1}$是奇函数.
(1)求a的值;
(2)证明f(x)是R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.问题“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可变为(${\frac{5}{13}}$)x+(${\frac{12}{13}}$)x=1,考察函数f(x)=(${\frac{5}{13}}$)x+(${\frac{12}{13}}$)x可知f(2)=1,且函数f(x)在R上单调递减,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx-4>2lg2-x的解集为(4,+∞)..

查看答案和解析>>

同步练习册答案