精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=$\left\{\begin{array}{l}-{x^2}-3,x≤1\\{x^2}+x-6,x>1\end{array}$则f(f(2))=-3.

分析 利用分段函数直接求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}-{x^2}-3,x≤1\\{x^2}+x-6,x>1\end{array}$,
则f(2)=4+2-6=0.
f(f(2))=f(0)=-3.
故答案为:-3.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2\\;x<-1或x>2}\\{{x}^{2}-x-2\\;-1≤x≤2}\end{array}\right.$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α终边上一点M的坐标为(-$\sqrt{3}$,1),则cosα=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算 ${\frac{5(4+i)}{i(2+i)}^2}$1-38i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=m+$\frac{2}{{2}^{x}+1}$(x∈R)是奇函数.
(1)求实数m的值.
(2)判断函数的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow a=(2,1),A(1,0),B(cosθ,t)$,
(1)若$\overrightarrow a∥\overrightarrow{AB}$,且$|{\overrightarrow{AB}}|=\sqrt{5}|{\overrightarrow{OA}}|$,求向量$\overrightarrow{OB}$的坐标.
(2)若$\overrightarrow a$⊥$\overrightarrow{AB}$,求$y={cos^2}θ-cosθ+{(\frac{t}{4})^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)(用综合法证明)
已知△ABC的内角A、B、C所对的边分别为a,b,c,且A、B、C成等差数列,a,b,c成等比数列,证明:△ABC为等边三角形.
(2)(用分析法证明)
设a,b,c为一个三角形的三边,s=$\frac{1}{2}$(a+b+c),且s2=2ab,试证:s<2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(ax-5)cosx-asinx(0≤x≤π),其中a为正实数.
(Ⅰ)当a=1时,求f(x)在[0,π]上的零点个数.
(Ⅱ)对于定义域内的任意x1,x2,将|f(x1)-f(x2)|的最大值记作g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.现有一块正三棱锥形石料,其三条侧棱两两互相垂直,且侧棱长为1m,若要将这块石料打磨成一个石球,则所得石球的最大半径为$\frac{3-\sqrt{3}}{6}$.

查看答案和解析>>

同步练习册答案