精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow a=(2,1),A(1,0),B(cosθ,t)$,
(1)若$\overrightarrow a∥\overrightarrow{AB}$,且$|{\overrightarrow{AB}}|=\sqrt{5}|{\overrightarrow{OA}}|$,求向量$\overrightarrow{OB}$的坐标.
(2)若$\overrightarrow a$⊥$\overrightarrow{AB}$,求$y={cos^2}θ-cosθ+{(\frac{t}{4})^2}$的最小值.

分析 (1)由已知点的坐标求得$\overrightarrow{AB}$的坐标,结合$\overrightarrow a∥\overrightarrow{AB}$,且$|{\overrightarrow{AB}}|=\sqrt{5}|{\overrightarrow{OA}}|$列式求出t值,进一步求得cosθ,则向量$\overrightarrow{OB}$的坐标可求;
(2)由$\overrightarrow a$⊥$\overrightarrow{AB}$,把t用cosθ表示,代入$y={cos^2}θ-cosθ+{(\frac{t}{4})^2}$后整理,利用配方法求得最小值.

解答 解:(1)由已知得$\overrightarrow{AB}$=(cosθ-1,t),又$\overrightarrow{a}$∥$\overrightarrow{AB}$,∴2t-cosθ+1=0,
∴cosθ-1=2t.①
又∵|$\overrightarrow{AB}$|=$\sqrt{5}|{\overrightarrow{OA}}|$,∴(cosθ-1)2+t2=5.②
由①②得,5t2=5,∴t2=1.即t=±1.
当t=1时,cosθ=3(舍去),
当t=-1时,cosθ=-1,
∴B(-1,-1),则$\overrightarrow{OB}$=(-1,-1);
(2)由$\overrightarrow a$⊥$\overrightarrow{AB}$可知t=2-2cosθ,
∴y=cos2θ-cosθ+$\frac{{{{(cosθ-1)}^2}}}{4}$=$\frac{5}{4}co{s}^{2}θ-\frac{3}{2}cosθ+\frac{1}{4}$
=$\frac{5}{4}(cosθ-\frac{3}{5})^{2}-\frac{1}{5}$,
∴当cos$θ=\frac{3}{5}$时,${y}_{min}=-\frac{1}{5}$.

点评 本题考查数量积判断两个平面向量的垂直关系,考查了三角函数的化简与求值,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如果女大学生身高x(cm)与体重y(kg)的关系满足线性回归模型y=0.85x-88+e,其中|e|≤4,如果已知某女大学生身高160cm,则体重预计不会低于(  )
A.44 kgB.46 kgC.50 kgD.54 kg

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等差数列{an}的前n项和为Sn,且满足S15=25π,则tana8的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列各式:
(1)log336-log34+log525;
(2)($\frac{16}{81}$)${\;}^{-\frac{1}{4}}$+8${\;}^{\frac{2}{3}}$+$\sqrt{(-2)^{2}}$;
(3)lg$\sqrt{10}$+lne2-log28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}-{x^2}-3,x≤1\\{x^2}+x-6,x>1\end{array}$则f(f(2))=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\frac{t+sinx}{t+cosx}({|t|>1})$的最大值和最小值分别是M,m,则M•m为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与向量$\overrightarrow d=(12,5)$平行的单位向量为(  )
A.$(\frac{12}{13},5)$B.$(-\frac{12}{13},-\frac{5}{13})$
C.$(\frac{12}{13},\frac{5}{13})$或$(-\frac{12}{13},-\frac{5}{13})$D.$(±\frac{12}{13},±\frac{5}{13})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,平面PED⊥平面PAB,PD⊥AD,点E为AB中点.
(1)求证:PD⊥AB;
(2)求证:PD⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$\sqrt{a}$,$\sqrt{b}$是方程x2-6x+5=0的两根,则$\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}$=31.

查看答案和解析>>

同步练习册答案