精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,π]上的最大值与最小值.

分析 (Ⅰ)先求出函数的导数,令f′(x)=0,从而求出函数的单调区间;(Ⅱ)先求出函数在[-π,π]上的单调区间,从而求出函数的最值.

解答 解:(Ⅰ)$f'(x)=-{e^{-x}}sinx+{e^{-x}}cosx=\frac{{\sqrt{2}cos(x+\frac{π}{4})}}{e^x}$.
令f′(x)=0,解得:$x=kπ+\frac{π}{4},k∈Z$.
因为当$x∈(2kπ-\frac{3π}{4},2kπ+\frac{π}{4}),k∈Z$时,f′(x)>0;
当$x∈(2kπ+\frac{π}{4},2kπ+\frac{5π}{4}),k∈Z$时,f′(x)<0,
所以f(x)的单调递增区间是$(2kπ-\frac{3π}{4},2kπ+\frac{π}{4}),k∈Z$,
单调递减区间是$(2kπ+\frac{π}{4},2kπ+\frac{5π}{4}),k∈Z$.
(Ⅱ)由(Ⅰ)知,f(x)在$[-π,-\frac{3π}{4})$上单调递减,在$(-\frac{3π}{4},\frac{π}{4})$上单调递增,在$(\frac{π}{4},π]$上单调递减,
而$f(-π)=0,\;\;f(\frac{π}{4})=\frac{{\sqrt{2}}}{2}{e^{-\frac{π}{4}}}>0$,$f(π)=0,\;\;f(-\frac{3π}{4})=-\frac{{\sqrt{2}}}{2}{e^{\frac{3π}{4}}}<0$
所以f(x)在[-π,π]上的最大值为$\frac{{\sqrt{2}}}{2}{e^{-\frac{π}{4}}}$,最小值为$-\frac{{\sqrt{2}}}{2}{e^{\frac{3π}{4}}}$.

点评 本题考察了函数的单调性,函数的最值问题,考察导数的应用,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知棱长为2的正方体ABCD-GPHF截去一个多面体后,所得几何体如图所示,点E在GP上,且EG=1.
(1)求证:AF⊥CE;
(2)求多面体EFG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合A={-1,0,1,2},集合B={1,2,3},则A∩B={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,正弦曲线y=sinx,余弦曲线y=cosx与两直线x=0,x=π所围成的阴影部分的面积为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=sin(2x-ϕ)(0<ϕ<π)的图象沿x轴向左平移$\frac{π}{6}$个单位后得到的图象关于原点对称,则ϕ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+$\frac{b}{x}$+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$(2n+1)+$\frac{n}{2n+1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设实数x,y满足$\left\{{\begin{array}{l}{x≥1\;\;\;\;\;\;}\\{y≥x-1\;}\\{x+y≤3\;}\end{array}}\right.$,则动点P(x,y)所形成区域的面积为1,z=x2+y2的取值范围是[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.钝角△ABC的三个内角A、B、C的对边分别为a、b、c,A=$\frac{π}{4}$,sin2B+cos22C=1.
(1)求角B,C;
(2)若a2+c2=b+$\sqrt{3}$ac+2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB,则A=(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案