精英家教网 > 高中数学 > 题目详情
下列命题中,错误命题的序号是______.
(1)已知△ABC中,a>b?A>B?sinA>sinB.
(2)已知△ABC中,a=3,b=5,c=7,S△ABC=
15
3
4

(3)已知数列{an}中,a1=1,an+1=2an+1,则其前5项的和为31.
(4)若数列{an}的前n项和为Sn=2an-1,则an=2n,n∈N*
(1)在三角形中,根据大边对大角知a>b?A>B成立,由正弦定理
a
sin?A
=
b
sin?B
得a>b?sinA>sinB,所以(1)正确.
(2)由余弦定理知cos?C=
32+52-72
2×3×5
=-
1
2
,所以sinC=
3
2
,所以三角形的面积为S=
1
2
absin?C=
1
2
×3×5×
3
2
=
15
3
4
,所以(2)正确.
(3)由a1=1,an+1=2an+1,得a2=3,a3=7,a4=15,a5=31,所以前5项和为S=1+3+7+15+31=57,所以(3)错误.
(4)当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1),即an=2an-1,所以{an}是以公比q=2的等比数列,当n=1时,a1=2,所以an=2?2n-1=2n,所以(4)正确.
故答案为:(1)(2)(4)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下列说法:
①命题“若x>0,则2x>1”的否命题是“若x≤0,则2x≤1”;
②关于x的不等式a<sin2x+
1
sin2x
恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于函数f(x)=|x|x+bx+c,给出下列四个命题:其中正确的命题序号为______.
①b=0,c>0时,f(x)=0只有一个实数根;
②c=0时,f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;
④函数f(x)至多有两个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

原命题为:“若m,n都是奇数,则m+n是偶数”,其中原命题、逆命题、否命题、逆否命题中,其中真命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线m、n和平面a、β.下列四个命题中,
①若ma,na,则mn;
②若m?α,n?α,mβ,nβ,则αβ;
③若α⊥β,m?α,则m⊥β;
④若α⊥β,m⊥β,m?α,则mα,
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数f(x)=-x-x3,设x1+x2≤0,下列不等式中正确的序号有______.
①f(x1)f(-x1)≤0 
②f(x2)f(-x2)>0
③f(x1)+f(x2)≤f(-x1)+f(-x2) 
④f(x1)+f(x2)≥f(-x1)+f(-x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列判断错误的是(  )
A.a,b,m为实数,则“am2<bm2”是“a<b”的充分不必要条件
B.命题“对任意x∈R,x3-x2-1≤0”的否定是“存在x∈R,x3-x2-1>0”
C.若p且q为假命题,则p,q均为假命题
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设[x]表示不超过x的最大整数,如[π]=3,[-2.3]=-3.给出下列命题:
①对任意实数x,都有x-1<[x]≤x;
②对任意实数x,y,都有[x+y]≤[x]+[y];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函数f(x)=[x•[x]],当x∈[0,n)(n∈N*)时,令f(x)的值域为A,记集合A的元素个数为an,则
an+49
n
的最小值为
19
2

其中所有真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若α、β是不重合的平面,a、b、c是互不相同的空间直线,则下列命题中为真命题的是______.(写出所有真命题的序号)
①若aα,bα,则ab
②若cα,b⊥α,则c⊥b
③若c⊥α,cβ,则α⊥β
④若b?α,c?α且a⊥b,a⊥c,则a⊥α

查看答案和解析>>

同步练习册答案