精英家教网 > 高中数学 > 题目详情
1.设复数z=-7+5i(是虚数单位),z的共轭复数为$\overline{z}$,则复数(6+z)•$\overline{z}$的虚部为(  )
A.-30B.30C.32D.-32

分析 由已知复数z求出$\overline{z}$,然后代入(6+z)•$\overline{z}$计算得答案.

解答 解:由z=-7+5i,
得$\overline{z}=-7-5i$,
则(6+z)•$\overline{z}$=(6-7+5i)•(-7-5i)=32-30i,
∴复数(6+z)•$\overline{z}$的虚部为:-30.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0),焦点为F,准线为l,抛物线C上一点A的横坐标为3,且点A到准线l的距离为5.
(1)求抛物线C的方程;
(2)求以点M(3,2)为中点的弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{2}$,则an=(  )
A.$\frac{1}{{3•{2^{n-1}}}}$B.$\frac{1}{{2•{3^{n-1}}}}$C.$\frac{1}{2^n}$D.$\frac{n}{3^n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若△ABC的内角A,B,C所对的边a、b、c满足(a+b)2=10+c2,且cosC=$\frac{2}{3}$,则a2+b2的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|2x≥4},集合B={x|y=lg(x-1)},则A∩B=(  )
A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,则z的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且满足an=2-3Sn(n∈N*
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设bn=log2an,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“三元一次方程组的系数矩阵恰为单位矩阵”是“该方程组有唯一解”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各函数的导数:
(1)y=2x;         
(2)$y=x\sqrt{x}$.

查看答案和解析>>

同步练习册答案