精英家教网 > 高中数学 > 题目详情
9.若△ABC的内角A,B,C所对的边a、b、c满足(a+b)2=10+c2,且cosC=$\frac{2}{3}$,则a2+b2的最小值为6.

分析 由已知可得a2+b2-c2=10-2ab,利用余弦定理可得cosC=$\frac{10-2ab}{2ab}$=$\frac{2}{3}$,解得:ab=3,利用基本不等式即可计算得解.

解答 解:∵(a+b)2=10+c2,且cosC=$\frac{2}{3}$,
∴由已知可得:a2+b2-c2=10-2ab,
又∵cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{10-2ab}{2ab}$=$\frac{2}{3}$,
∴解得:ab=3,
∴a2+b2≥2ab=6.
故答案为:6.

点评 本题主要考查了余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.极坐标方程ρ(cos2θ-sin2θ)=0表示的曲线为(  )
A.极轴B.一条直线C.双曲线D.两条相交直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在正六边形ABCDEF中,若AB=1,则$\overrightarrow{AB}•\overrightarrow{CA}+\overrightarrow{AB}•\overrightarrow{AD}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线Γ1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,椭圆Γ2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1的离心率为e,直线MN过F2与双曲线交于M,N两点,若cos∠F1MN=cos∠F1F2M,$\frac{|{F}_{1}M|}{|{F}_{1}N|}$=e,则双曲线Γ1的两条渐近线的倾斜角分别为(  )
A.30°或150°B.45°或135°C.60°或120°D.15°或165°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用斜二测画法得到一个水平放置的平面图形的直观图为如图所示的直角梯形,其中梯形的上底是下底的$\frac{1}{2}$,若原平面图形的面积为3$\sqrt{2}$,则OA的长为(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在二项式${(\sqrt{x}+\frac{1}{{2\sqrt{x}}})^n}$的展开式中,第三项系数为n-1,求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z=-7+5i(是虚数单位),z的共轭复数为$\overline{z}$,则复数(6+z)•$\overline{z}$的虚部为(  )
A.-30B.30C.32D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题:
①若△ABC的面积为$\frac{\sqrt{3}}{2}$,c=2,A=60°,则a的值为$\sqrt{3}$;
②等差数列{an}中,a1=2,a1,a3,a4成等比数列,则公差为-$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$;
④在△ABC中,若sin2A<sin2B+sin2C,则△ABC为锐角三角形.
其中正确命题的序号是①③  .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过C上一点$({2\sqrt{2},\sqrt{2}})$的切线l的方程为x+2y-4$\sqrt{2}$=0.
(1)求椭圆C的方程.
(2)设过点M(0,1)且斜率不为0的直线交椭圆于A,B两点,试问y轴上是否存在点P,使得$\overrightarrow{PM}=λ(\frac{{\overrightarrow{PA}}}{{|{\overrightarrow{PA}}|}}+\frac{{\overrightarrow{PB}}}{{|{\overrightarrow{PB}}|}})$?若存在,求出点P的坐标;若不存在说明理由.

查看答案和解析>>

同步练习册答案