精英家教网 > 高中数学 > 题目详情
20.在正六边形ABCDEF中,若AB=1,则$\overrightarrow{AB}•\overrightarrow{CA}+\overrightarrow{AB}•\overrightarrow{AD}$=-$\frac{1}{2}$.

分析 根据向量的三角形法则,正六边形的性质结合向量数量积的定义,代入向量的数量积定义式计算即可得到所求值.

解答 解:六边形ABCDEF是边长为1的正六边形
则$\overrightarrow{AB}•\overrightarrow{CA}+\overrightarrow{AB}•\overrightarrow{AD}$=$\overrightarrow{AB}$•($\overrightarrow{CA}$+$\overrightarrow{AD}$)=$\overrightarrow{AB}$•$\overrightarrow{CD}$
=$\overrightarrow{AB}$•$\overrightarrow{AF}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AF}$|•cos∠BAF=1×1×cos120°=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题考查向量的三角形法则和数量积的定义,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点P为双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$右支上的一点,F1,F2分别为双曲线的左、右焦点,点I为△PF1F2的内心,若${S_{△IP{F_1}}}={S_{△IP{F_2}}}+λ•{S_{△I{F_1}{F_2}}}$成立,则λ的值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0),焦点为F,准线为l,抛物线C上一点A的横坐标为3,且点A到准线l的距离为5.
(1)求抛物线C的方程;
(2)求以点M(3,2)为中点的弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知tanα=-2,计算:$\frac{3sinα+2cosα}{5cosα-sinα}$
(2)已知sinα=$\frac{2\sqrt{5}}{5}$,求tan(α+π)+$\frac{sin(\frac{5π}{2}+α)}{cos(\frac{5π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x<2},集合B={x|x>1},则(∁UA)∩B=(  )
A.{x|1<x<2}B.{x|x≥2}C.{x|1≤x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.泰华中学采取分层抽样的方法从高二学生中按照性别抽出20名学生作为样本,其选报文科与理科的情况如下表所示:
文科25
理科103
(Ⅰ)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为泰华中学的高二学生选报文理科与性别有关?
注:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{2}$,则an=(  )
A.$\frac{1}{{3•{2^{n-1}}}}$B.$\frac{1}{{2•{3^{n-1}}}}$C.$\frac{1}{2^n}$D.$\frac{n}{3^n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若△ABC的内角A,B,C所对的边a、b、c满足(a+b)2=10+c2,且cosC=$\frac{2}{3}$,则a2+b2的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“三元一次方程组的系数矩阵恰为单位矩阵”是“该方程组有唯一解”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

同步练习册答案