分析 (1)利用同角三角函数的基本关系,求得要求式子的值.
(2)由题意可得α为第一象限角或第二象限角,再利用同角三角三角函数的基本关系、诱导公式,求得要求式子的值.
解答 解:(1)∵tanα=-2,∴$\frac{3sinα+2cosα}{5cosα-sinα}=\frac{3tanα+2}{5-tanα}=\frac{3(-2)+2}{5-(-2)}=-\frac{4}{7}$.
(2)∵知sinα=$\frac{2\sqrt{5}}{5}$,∴α为第一象限角或第二象限角,
当α为第一象限角时,cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{5}}{5}$,tan(α+π)+$\frac{sin(\frac{5π}{2}+α)}{cos(\frac{5π}{2}-α)}$=tanα+$\frac{cosα}{sinα}$=$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=$\frac{1}{sinαcosα}$=$\frac{5}{2}$.
当α为第二象限角时,cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{\sqrt{5}}{5}$,tan(α+π)+$\frac{sin(\frac{5π}{2}+α)}{cos(\frac{5π}{2}-α)}$=tanα+$\frac{cosα}{sinα}$=$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=$\frac{1}{sinαcosα}$=-$\frac{5}{2}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30°或150° | B. | 45°或135° | C. | 60°或120° | D. | 15°或165° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com