精英家教网 > 高中数学 > 题目详情
16.在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在直线方程为y=0,若点B的坐标为(1,2).
(1)求点A和点C的坐标;
(2)求AC边上的高所在的直线l的方程.

分析 (1)由已知点A应在BC边上的高所在直线与∠A的角平分线所在直线的交点,联立方程即可得出A坐标.由kAC=-kAB=-1,所以AC所在直线方程为y=-(x+1),BC所在直线的方程为y-2=-2(x-1),联立解得C坐标.
(2)由(1)知,AC所在直线方程x+y+1=0,即可得出l所在的直线方程.

解答 解:(1)由已知点A应在BC边上的高所在直线与∠A的角平分线所在直线的交点,
由$\left\{\begin{array}{l}x-2y+1=0\\ y=0\end{array}\right.$得$\left\{\begin{array}{l}x=-1\\ y=0\end{array}\right.$,故A(-1,0).
由kAC=-kAB=-1,所以AC所在直线方程为y=-(x+1),BC所在直线的
方程为y-2=-2(x-1),由$\left\{\begin{array}{l}y=-(x+1)\\ y-2=-2(x-1)\end{array}\right.$,得C(5,-6).
(2)由(1)知,AC所在直线方程x+y+1=0,
所以l所在的直线方程为(x-1)-(y-2)=0,即x-y+1=0.

点评 本题考查了相互垂直的直线斜率之间的关系、直线方程、角平分线性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知以点C(t,$\frac{2}{t}$)(t>0)为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.
(Ⅰ)求证:△AOB的面积为定值.
(Ⅱ)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
(Ⅲ)在(Ⅱ)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.
(1)根据以上数据列出2×2列联表;
(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设在平面上有两个向量$\overrightarrow a$=(cos α,sin α)(0°≤α<180°),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
(1)求证:向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$垂直;
(2)当向量$\sqrt{3}\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\sqrt{3}\overrightarrow b$的模相等时,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0),焦点为F,准线为l,抛物线C上一点A的横坐标为3,且点A到准线l的距离为5.
(1)求抛物线C的方程;
(2)求以点M(3,2)为中点的弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆N的圆心在直线l:3x-4y+7=0,且圆N与y轴切于点(0,4).
(1)直线l1∥l,且与圆N相切,求直线l1的方程;
(2)若过点D(3,6)的直线l2被圆N所截的弦长为$4\sqrt{2}$,求直线l2的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知tanα=-2,计算:$\frac{3sinα+2cosα}{5cosα-sinα}$
(2)已知sinα=$\frac{2\sqrt{5}}{5}$,求tan(α+π)+$\frac{sin(\frac{5π}{2}+α)}{cos(\frac{5π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.泰华中学采取分层抽样的方法从高二学生中按照性别抽出20名学生作为样本,其选报文科与理科的情况如下表所示:
文科25
理科103
(Ⅰ)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为泰华中学的高二学生选报文理科与性别有关?
注:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,则z的最大值为9.

查看答案和解析>>

同步练习册答案