精英家教网 > 高中数学 > 题目详情
13.数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1若对任意的n∈N*,(Sn+$\frac{1}{2}$)•k≥$\frac{1}{3}$恒成立,则实数k的取值范围是$[\frac{2}{9},+∞)$.

分析 an+1=2Sn+1,即Sn+1-Sn=2Sn+1,变形为Sn+1+$\frac{1}{2}$=3(Sn+$\frac{1}{2}$),利用等比数列的通项公式可得Sn.代入(Sn+$\frac{1}{2}$)•k≥$\frac{1}{3}$,再利用数列的单调性即可得出.

解答 解:∵an+1=2Sn+1,∴Sn+1-Sn=2Sn+1,∴Sn+1+$\frac{1}{2}$=3(Sn+$\frac{1}{2}$),
∴数列{Sn+$\frac{1}{2}$}是等比数列,首项为$\frac{3}{2}$,公比为3.
∴Sn+$\frac{1}{2}$=$\frac{3}{2}×{3}^{n-1}$,化为:Sn=$\frac{{3}^{n}-1}{2}$.
代入(Sn+$\frac{1}{2}$)•k≥$\frac{1}{3}$,化为:k≥$\frac{2}{{3}^{n+1}}$恒成立,而{$\frac{2}{{3}^{n+1}}$}单调递减,
∴当n=1时,$\frac{2}{{3}^{n+1}}$取得最大值$\frac{2}{9}$.
∴$k≥\frac{2}{9}$.
故答案为:$[\frac{2}{9},+∞)$.

点评 本题考查了数列递推关系、等比数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$B=\frac{π}{3},AC=\sqrt{3}$,则△ABC周长的取值范围是(  )
A.$(2,3\sqrt{3}]$B.$(2\sqrt{3},3\sqrt{3}]$C.$[2,3\sqrt{3}]$D.$(2\sqrt{3},3+\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设在平面上有两个向量$\overrightarrow a$=(cos α,sin α)(0°≤α<180°),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
(1)求证:向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$垂直;
(2)当向量$\sqrt{3}\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\sqrt{3}\overrightarrow b$的模相等时,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆N的圆心在直线l:3x-4y+7=0,且圆N与y轴切于点(0,4).
(1)直线l1∥l,且与圆N相切,求直线l1的方程;
(2)若过点D(3,6)的直线l2被圆N所截的弦长为$4\sqrt{2}$,求直线l2的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知tanα=-2,计算:$\frac{3sinα+2cosα}{5cosα-sinα}$
(2)已知sinα=$\frac{2\sqrt{5}}{5}$,求tan(α+π)+$\frac{sin(\frac{5π}{2}+α)}{cos(\frac{5π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个样本a,3,4,5,6的平均数为b,且方程x2-6x+c=0的两个根为a,b,则该样本的方差为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.泰华中学采取分层抽样的方法从高二学生中按照性别抽出20名学生作为样本,其选报文科与理科的情况如下表所示:
文科25
理科103
(Ⅰ)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为泰华中学的高二学生选报文理科与性别有关?
注:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某三棱锥的三视图如图所示,则俯视图的面积为(  )
A.4B.8C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sin($\frac{π}{4}$-α)=$\frac{3}{5}$,-$\frac{π}{4}$<α<0,则cos2α=(  )
A.-$\frac{24}{25}$B.$\frac{1}{5}$C.-$\frac{1}{5}$D.$\frac{24}{25}$

查看答案和解析>>

同步练习册答案