精英家教网 > 高中数学 > 题目详情
18.一个样本a,3,4,5,6的平均数为b,且方程x2-6x+c=0的两个根为a,b,则该样本的方差为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

分析 由平均数定义及韦达定理得a+$\frac{a+3+4+5+6}{5}$=6,由此求出a,b,从而能求出该样本的方差.

解答 解:∵一个样本a,3,4,5,6的平均数为b,且方程x2-6x+c=0的两个根为a,b,
∴a+$\frac{a+3+4+5+6}{5}$=6,
解得a=2,b=$\frac{a+3+4+5+6}{5}$=4,
∴该样本的方差为:
${S}^{2}=\frac{1}{5}$[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.
故选:B.

点评 本题考查平均数、方差、韦达定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是(1)、(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为$4\sqrt{5}$,F1、F2为椭圆的两个焦点,P为椭圆上一点,△PF1F2的周长为$4\sqrt{5}+12$,则椭圆C的方程是$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法中正确的有:已知求得线性回归方程y=bx+a,相关系数r,①若r>0,则x增大时,y也相应增大;②若r<0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1若对任意的n∈N*,(Sn+$\frac{1}{2}$)•k≥$\frac{1}{3}$恒成立,则实数k的取值范围是$[\frac{2}{9},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果散点图中所有的样本点都落在一条斜率为2的直线上,则R2等于(  )
A.1B.2C.0D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证数列{bn}是等比数列;
(2)设cn=$\frac{a_n}{2^n}$,求证数列{cn}是等差数列;
 (3)在(2)的条件下设dn=$\frac{1}{{c}_{n}•{c}_{n+1}}$,求{dn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在长方体ABCD-A1B1C1D1中,E是CD上一点,AB=AD=3,AA1=2,CE=1,P是AA1上一点,且DP∥平面AEB1,F是棱DD1与平面BEP的交点,则DF的长为(  )
A.1B.$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,则f(x)最小正周期为4π,奇偶性为偶.

查看答案和解析>>

同步练习册答案