精英家教网 > 高中数学 > 题目详情
9.函数f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,则f(x)最小正周期为4π,奇偶性为偶.

分析 化简f(x),根据余弦函数的周期性和奇偶性判断即可.

解答 解:f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$=$\frac{2sin\frac{x}{2}cos\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}+2sin\frac{x}{2}}$=$\frac{cos\frac{x}{2}}{cos\frac{x}{2}+1}$=1-$\frac{1}{1+cos\frac{x}{2}}$,
∵y=cos$\frac{x}{2}$的最小正周期是4π,
故f(x)的最小正周期是4π,
f(-x)=f(x),是偶函数,
故答案为:4π,偶.

点评 本题考查了函数的化简问题,考查余弦函数的周期和奇偶性,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.一个样本a,3,4,5,6的平均数为b,且方程x2-6x+c=0的两个根为a,b,则该样本的方差为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线ax+y-3=0与2x-y+2=0垂直,则二项式${(\frac{x}{a}-\frac{1}{x})}^{5}$展开式中x3的系数为-80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平面直角坐标系中,曲线C1的直角坐标方程为(x+1)2+(y-1)2=1,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)求曲线C1与曲线C2的参数方程
(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sin($\frac{π}{4}$-α)=$\frac{3}{5}$,-$\frac{π}{4}$<α<0,则cos2α=(  )
A.-$\frac{24}{25}$B.$\frac{1}{5}$C.-$\frac{1}{5}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果命题“p∧q”是假命题,“¬p”是真命题,那么(  )
A.命题p一定是真命题
B.命题q一定是真命题
C.命题q一定是假命题
D.命题q可以是真命题也可以是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=sin(2x+\frac{π}{3})$图象中的一条对称轴的方程是(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的方程x2+(k+i)x-2-ki=0(x∈R,i为虚数单位)有实数根,则实数k的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知(x3+$\frac{1}{x^2}$)n的展开式中,只有第六项的二项式系数最大,求展开式中不含x的项.

查看答案和解析>>

同步练习册答案