精英家教网 > 高中数学 > 题目详情
18.关于x的方程x2+(k+i)x-2-ki=0(x∈R,i为虚数单位)有实数根,则实数k的值为±1.

分析 把已知变形为复数代数形式,再由实部和虚部均为0列式求得k值.

解答 解:由x2+(k+i)x-2-ki=0,
得x2+kx-2+(x-k)i=0,
即$\left\{\begin{array}{l}{{x}^{2}+kx-2=0}\\{x=k}\end{array}\right.$,解得:k=±1.
故答案为:±1.

点评 本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,在长方体ABCD-A1B1C1D1中,E是CD上一点,AB=AD=3,AA1=2,CE=1,P是AA1上一点,且DP∥平面AEB1,F是棱DD1与平面BEP的交点,则DF的长为(  )
A.1B.$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,则f(x)最小正周期为4π,奇偶性为偶.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a2016-5=(  )
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}中,a1=2,an+1=an+ln(1+$\frac{1}{n}$),则an=(  )
A.2+lnnB.2+(n-1)lnnC.lnn-2D.1+n+lnn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.y=5-sin2x-4cosx最小值为(  )
A.-2B.0C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α是△ABC的一个内角,且$sinα+cosα=\frac{1}{5}$,
(Ⅰ)判断△ABC的形状;
(Ⅱ)求$\frac{{sinxcosx+{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,两个阴影部分的面积之和可表示为(  )
A.$\int_{-1}^4{f(x)}dx$B.$-\int_{-1}^4{f(x)}dx$
C.$\int_3^4{f(x)}dx-\int_{-1}^3{f(x)dx}$D.$\int_{-1}^3{f(x)}dx-\int_3^4{f(x)dx}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)的导函数为f′(x),对任意x∈R,都有2f′(x)>f(x)成立,则不等式 ${e^{\frac{x-1}{2}}}f(x)<f(2x-1)$的解集为(1,+∞).

查看答案和解析>>

同步练习册答案