精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)的导函数为f′(x),对任意x∈R,都有2f′(x)>f(x)成立,则不等式 ${e^{\frac{x-1}{2}}}f(x)<f(2x-1)$的解集为(1,+∞).

分析 令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,利用导数研究其在R上的单调性即可得出.

解答 解:令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,则g′(x)=$\frac{{e}^{\frac{x}{2}}{f}^{′}(x)-\frac{1}{2}{e}^{\frac{x}{2}}f(x)}{({e}^{\frac{x}{2}})^{2}}$=$\frac{2{f}^{′}(x)-f(x)}{2{e}^{\frac{x}{2}}}$>0,
∴函数g(x)在R上单调递增,
而不等式 ${e^{\frac{x-1}{2}}}f(x)<f(2x-1)$化为:$\frac{f(2x-1)}{{e}^{\frac{2x-1}{2}}}$>$\frac{f(x)}{{e}^{\frac{x}{2}}}$,
∴2x-1>x,解得x>1,
∴不等式 ${e^{\frac{x-1}{2}}}f(x)<f(2x-1)$的解集为(1,+∞).
故答案为:(1,+∞).

点评 本题考查了通过构造函数利用导数研究函数的单调性解不等式的方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.关于x的方程x2+(k+i)x-2-ki=0(x∈R,i为虚数单位)有实数根,则实数k的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知(x3+$\frac{1}{x^2}$)n的展开式中,只有第六项的二项式系数最大,求展开式中不含x的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.当a>0,b>0时,①(a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4;②a2+b2+2≥2a+2b;③$\sqrt{|a-b|}$≥$\sqrt{a}$-$\sqrt{b}$;④$\frac{2ab}{a+b}$≥$\sqrt{ab}$.
以上4个不等式恒成立的是①②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处的导数为0.
(1)求f(x)的解析式;       
(2)求f(x)在点A(1,16)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线 C1极坐标方程是:ρ=cosθ-sinθ,将其化为直角坐标方程为x2+y2-x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$z=a+\sqrt{3}i$(a>0)且|z|=2,则$\overline z$=(  )
A.$1-\sqrt{3}i$B.$1+\sqrt{3}i$C.$2-\sqrt{3}i$D.$3+\sqrt{3}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足$\overrightarrow{PM}$=$\overrightarrow{MP′}$,当P在圆C上运动时,点M的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{4}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

同步练习册答案