分析 令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,利用导数研究其在R上的单调性即可得出.
解答 解:令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,则g′(x)=$\frac{{e}^{\frac{x}{2}}{f}^{′}(x)-\frac{1}{2}{e}^{\frac{x}{2}}f(x)}{({e}^{\frac{x}{2}})^{2}}$=$\frac{2{f}^{′}(x)-f(x)}{2{e}^{\frac{x}{2}}}$>0,
∴函数g(x)在R上单调递增,
而不等式 ${e^{\frac{x-1}{2}}}f(x)<f(2x-1)$化为:$\frac{f(2x-1)}{{e}^{\frac{2x-1}{2}}}$>$\frac{f(x)}{{e}^{\frac{x}{2}}}$,
∴2x-1>x,解得x>1,
∴不等式 ${e^{\frac{x-1}{2}}}f(x)<f(2x-1)$的解集为(1,+∞).
故答案为:(1,+∞).
点评 本题考查了通过构造函数利用导数研究函数的单调性解不等式的方法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1-\sqrt{3}i$ | B. | $1+\sqrt{3}i$ | C. | $2-\sqrt{3}i$ | D. | $3+\sqrt{3}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com