精英家教网 > 高中数学 > 题目详情
10.已知α是△ABC的一个内角,且$sinα+cosα=\frac{1}{5}$,
(Ⅰ)判断△ABC的形状;
(Ⅱ)求$\frac{{sinxcosx+{{sin}^2}x}}{1-tanx}$的值.

分析 (Ⅰ)α是三角形的一个内角,利用$sinα+cosα=\frac{1}{5}$∈(0,1),可知此三角形是钝角三角形.
(Ⅱ)已知等式记作①,将已知等式左右两边平方,左边利用同角三角函数间的基本关系sin2x+cos2x=1化简,得出2sinxcosx的值,小于0,可得出sinx大于0,cosx小于0,然后利用完全平方公式化简(sinx-cosx)2,再利用同角三角函数间的基本关系化简,并将2sinxcosx的值代入,开方得到sinx-cosx的值,记作②,可得出cosx-sinx的值;联立①②组成方程组,求出方程组的解得到sinx与cosx的值,再利用同角三角函数间的基本关系弦化切求出tanx的值,将sinx,cosx及tanx的值代入所求的式子中,化简后即可求出所求式子的值.

解答 解:(Ⅰ)解:∵α是三角形的一个内角,
∴sinα>0,
又$sinα+cosα=\frac{1}{5}$,
∴(sinα+cosα)2=1+2sinα•cosα=$\frac{1}{25}$,
∴2sinα•cosα=-$\frac{24}{25}$<0,sinα>0,
∴cosα<0,
∴α为钝角,
∴此三角形是钝角三角形.
(Ⅱ)∵0<x<π,sinx+cosx=$\frac{1}{5}$①,
∴(sinx+cosx)2=$\frac{1}{25}$,即sin2x+2sinxcosx+cos2x=1+2sinxcosx=$\frac{1}{25}$,
∴2sinxcosx=-$\frac{24}{25}$<0,即sinx>0,cosx<0,
∴(sinx-cosx)2=sin2x-2sinxcosx+cos2x=1-sin2x=$\frac{49}{25}$,
∴sinx-cosx=$\frac{7}{5}$②,
则cosx-sinx=-$\frac{7}{5}$;
联立①②解得:sinx=$\frac{4}{5}$,cosx=-$\frac{3}{5}$,
∴tanx=$\frac{sinx}{cosx}$=-$\frac{4}{3}$,
则 $\frac{{sinxcosx+{{sin}^2}x}}{1-tanx}$=$\frac{\frac{4}{5}×(-\frac{3}{5})-(\frac{4}{5})^{2}}{1-(-\frac{4}{3})}$=-$\frac{12}{25}$.

点评 此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若直线ax+y-3=0与2x-y+2=0垂直,则二项式${(\frac{x}{a}-\frac{1}{x})}^{5}$展开式中x3的系数为-80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=sin(2x+\frac{π}{3})$图象中的一条对称轴的方程是(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的方程x2+(k+i)x-2-ki=0(x∈R,i为虚数单位)有实数根,则实数k的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x3-3ax2+(2a+1)x既有极小值又有极大值,则a的取值范围为(  )
A.-$\frac{1}{3}$<a<1B.a>1或a$<-\frac{1}{3}$C.-1$<a<\frac{1}{3}$D.a$>\frac{1}{3}$或a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在技术工程中,常用到双曲正弦函数$shx=\frac{{{e^x}-{e^{-x}}}}{2}$和双曲余弦函数$chx=\frac{{{e^x}-{e^{-x}}}}{2}$,其实双曲正弦函数和双曲线余弦函数与我们学过的正弦和余弦函数相似,比如关于正、余弦函数有cos(x+y)=cosxcosy-sinxsiny成立,而关于双曲正、余弦函数满足ch(x+y)=chxchy-shxshy,请你类比关系式,得出关于双曲正弦、双曲余弦函数的关系中不正确的是(  )
A.sh(x+y)=shxchy+chxshyB.sh2x=2shxchx
C.ch2x=2sh2x-1D.ch2x+sh2x=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(k)=sin\frac{kπ}{4}$,k∈Z.
(1)求证:f(1)+f(2)+…+f(8)=f(9)+f(10)+…+f(16);
(2)求f(1)+f(2)+…+f(2020)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知(x3+$\frac{1}{x^2}$)n的展开式中,只有第六项的二项式系数最大,求展开式中不含x的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线 C1极坐标方程是:ρ=cosθ-sinθ,将其化为直角坐标方程为x2+y2-x+y=0.

查看答案和解析>>

同步练习册答案