精英家教网 > 高中数学 > 题目详情
16.已知平面直角坐标系中,曲线C1的直角坐标方程为(x+1)2+(y-1)2=1,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)求曲线C1与曲线C2的参数方程
(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值.

分析 (Ⅰ)利用三种方程的转化方法,即可求曲线C1与曲线C2的参数方程
(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值,即求出A到曲线C2距离的最小值.

解答 解:(Ⅰ)曲线C1的直角坐标方程为(x+1)2+(y-1)2=1,参数方程为$\left\{\begin{array}{l}{x=-1+cosα}\\{y=1+sinα}\end{array}\right.$(α为参数);
曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$,直角坐标方程为x-y-4=0,参数方程为$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数);
(Ⅱ)设A(-1+cosα,1+sinα),
A到曲线C2的距离d=$\frac{|-1+cosα-1-sinα-4|}{\sqrt{2}}$=$\frac{6+\sqrt{2}sin(α-45°)}{\sqrt{2}}$,
∴sin(α-45°)=-1时,|AB|的最小值为3$\sqrt{2}$-1.

点评 本题考查三种方程的转化,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列说法中正确的有:已知求得线性回归方程y=bx+a,相关系数r,①若r>0,则x增大时,y也相应增大;②若r<0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在长方体ABCD-A1B1C1D1中,E是CD上一点,AB=AD=3,AA1=2,CE=1,P是AA1上一点,且DP∥平面AEB1,F是棱DD1与平面BEP的交点,则DF的长为(  )
A.1B.$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且其图象向右平移$\frac{π}{5}$个单位后得到函数g(x)=sinωx的图象,则φ等于(  )
A.-$\frac{π}{10}$B.-$\frac{π}{5}$C.$\frac{π}{10}$D.$\frac{π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若以椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右顶点为圆心的圆与直线x+$\sqrt{3}$y+2=0相切,则该圆的标准方程是(x-2)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.“a>b”是“a2>b2”的充分不必要条件
B.命题“?x0∈R,$x_0^2+1<0$”的否定是“?x∈R,x2+1>0”
C.关于x的方程x2+(a+1)x+a-2=0的两实根异号的充要条件是a<1
D.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,则f(x)最小正周期为4π,奇偶性为偶.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a2016-5=(  )
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,两个阴影部分的面积之和可表示为(  )
A.$\int_{-1}^4{f(x)}dx$B.$-\int_{-1}^4{f(x)}dx$
C.$\int_3^4{f(x)}dx-\int_{-1}^3{f(x)dx}$D.$\int_{-1}^3{f(x)}dx-\int_3^4{f(x)dx}$

查看答案和解析>>

同步练习册答案