精英家教网 > 高中数学 > 题目详情
6.下列说法中正确的有:已知求得线性回归方程y=bx+a,相关系数r,①若r>0,则x增大时,y也相应增大;②若r<0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.(  )
A.①②B.②③C.①③D.①②③

分析 根据两个变量之间的相关性和相关系数的大小关系,对选项中的命题进行分析、判断正误即可.

解答 解:根据相关系数的定义,变量之间的相关关系可利用相关系数r进行判断:
对于①,当r>0时,表示变量x,y正相关,说明x增大时y也相应增大,①正确;
对于②,当r<0时,表示变量x,y负相关,说明x增大时y减少,②错误;
对于③,当r=1或r=-1时,则x与y的关系完全对应(有函数关系),
在散点图上各个散点均在一条直线上,③正确.
综上,正确的命题序号是①③.
故选:C.

点评 本题考查了相关系数与函数模型的拟合效果的应用问题,解题的关键是理解相关系数越大拟合效果越好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.连续函数y=f(x)在一点的导数值为0是函数y=f(x)在这点取极值的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不必要也非充分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow a=(1,2),|\overrightarrow b|=1$,且$\overrightarrow a$与$\overrightarrow b$的夹角为60°.
(1)求与$\overrightarrow a$垂直的单位向量的坐标;
(2)求向量$2\overrightarrow b-\overrightarrow a$在$\overrightarrow a$上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,则$|{2\vec a-\vec b}|$等于(  )
A.4B.2C.13D.$2\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆N的圆心在直线l:3x-4y+7=0,且圆N与y轴切于点(0,4).
(1)直线l1∥l,且与圆N相切,求直线l1的方程;
(2)若过点D(3,6)的直线l2被圆N所截的弦长为$4\sqrt{2}$,求直线l2的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=log3(x-3)},B={x|x-3≤2},则A∪B=(  )
A.RB.{x|x≥5}C.{x|x<3}D.{x|3<x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个样本a,3,4,5,6的平均数为b,且方程x2-6x+c=0的两个根为a,b,则该样本的方差为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{AB}$=2$\overrightarrow{AC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{BC}$,则实数λ=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平面直角坐标系中,曲线C1的直角坐标方程为(x+1)2+(y-1)2=1,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)求曲线C1与曲线C2的参数方程
(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值.

查看答案和解析>>

同步练习册答案