精英家教网 > 高中数学 > 题目详情
15.已知$\overrightarrow{AB}$=2$\overrightarrow{AC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{BC}$,则实数λ=-2.

分析 由$\overrightarrow{AB}$=2$\overrightarrow{AC}$=2($\overrightarrow{AB}+\overrightarrow{BC}$),⇒$\overrightarrow{AB}+2\overrightarrow{BC}=\overrightarrow{0}$,即λ=-2;

解答 解:∵$\overrightarrow{AB}$=2$\overrightarrow{AC}$=2($\overrightarrow{AB}+\overrightarrow{BC}$),⇒$\overrightarrow{AB}+2\overrightarrow{BC}=\overrightarrow{0}$,即$\overrightarrow{AB}$=-2$\overrightarrow{BC}$,∴λ=-2;
故答案为:-2

点评 本题考查了数量的线性运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.编号为1,2,3,4,5的5人,入座编号也为1,2,3,4,5的5个座位,至多有2人对号入座的坐法种数为(  )
A.120B.130C.90D.109

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法中正确的有:已知求得线性回归方程y=bx+a,相关系数r,①若r>0,则x增大时,y也相应增大;②若r<0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果散点图中所有的样本点都落在一条斜率为2的直线上,则R2等于(  )
A.1B.2C.0D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证数列{bn}是等比数列;
(2)设cn=$\frac{a_n}{2^n}$,求证数列{cn}是等差数列;
 (3)在(2)的条件下设dn=$\frac{1}{{c}_{n}•{c}_{n+1}}$,求{dn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知f(x)=$\sqrt{\frac{1-x}{1+x}}$,α∈($\frac{π}{2}$,π),求f(cosα)+f(-cosα);
(2)求值:sin50°(1+$\sqrt{3}$tan10°).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在长方体ABCD-A1B1C1D1中,E是CD上一点,AB=AD=3,AA1=2,CE=1,P是AA1上一点,且DP∥平面AEB1,F是棱DD1与平面BEP的交点,则DF的长为(  )
A.1B.$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且其图象向右平移$\frac{π}{5}$个单位后得到函数g(x)=sinωx的图象,则φ等于(  )
A.-$\frac{π}{10}$B.-$\frac{π}{5}$C.$\frac{π}{10}$D.$\frac{π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a2016-5=(  )
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

同步练习册答案