精英家教网 > 高中数学 > 题目详情
4.用斜二测画法得到一个水平放置的平面图形的直观图为如图所示的直角梯形,其中梯形的上底是下底的$\frac{1}{2}$,若原平面图形的面积为3$\sqrt{2}$,则OA的长为(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{2}$

分析 由题意,原平面图形与斜二测画法得到的直观图的面积比为$1:\frac{\sqrt{2}}{4}$,利用原平面图形的面积为3$\sqrt{2}$,求出OA的长.

解答 解:由题意,原平面图形与斜二测画法得到的直观图的面积比为$1:\frac{\sqrt{2}}{4}$,
设OA=x,则直观图的面积为$\frac{1}{2}x•(x+\frac{x}{2})=\frac{3}{4}{x}^{2}$,
∴2$\sqrt{2}×\frac{3}{4}{x}^{2}$=3$\sqrt{2}$,∴$x=\sqrt{2}$.
故选B.

点评 由已知斜二测直观图根据斜二测画法规则正确画出原平面图形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若圆C:x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0过坐标原点,则实数m的值为(  )
A.2或1B.-2或-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x<2},集合B={x|x>1},则(∁UA)∩B=(  )
A.{x|1<x<2}B.{x|x≥2}C.{x|1≤x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{2}$,则an=(  )
A.$\frac{1}{{3•{2^{n-1}}}}$B.$\frac{1}{{2•{3^{n-1}}}}$C.$\frac{1}{2^n}$D.$\frac{n}{3^n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在矩形ABCD中,AB=2,AD=3,点F为CD的中点,点E在BC边上,若$\overrightarrow{AF}$$•\overrightarrow{DE}$=-4,则$\overrightarrow{AE}•\overrightarrow{BF}$的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若△ABC的内角A,B,C所对的边a、b、c满足(a+b)2=10+c2,且cosC=$\frac{2}{3}$,则a2+b2的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|2x≥4},集合B={x|y=lg(x-1)},则A∩B=(  )
A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且满足an=2-3Sn(n∈N*
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设bn=log2an,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.类比等差数列,定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,则这个数列的前2017项和S2017=5042.

查看答案和解析>>

同步练习册答案