分析 (1)由a:b:c=2:5:6,设a=2k,b=5k,c=6k.(k>0).利用余弦定理即可得出cosB.
(2)sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{39}}{8}$.利用$\frac{1}{2}acsinB$=$\frac{1}{2}×2k×6k$×$\frac{\sqrt{39}}{8}$=$\frac{3\sqrt{39}}{4}$,解得k即可得出.
解答 解:(1)由a:b:c=2:5:6,设a=2k,b=5k,c=6k.(k>0).
∴cosB=$\frac{(2k)^{2}+(6k)^{2}-(5k)^{2}}{2×2k×6k}$=$\frac{5}{8}$.
(2)sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{39}}{8}$.
∴$\frac{1}{2}acsinB$=$\frac{1}{2}×2k×6k$×$\frac{\sqrt{39}}{8}$=$\frac{3\sqrt{39}}{4}$,解得k=1.
∴△ABC的周长=13k=13.
点评 本题考查了余弦定理、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | (0,$\frac{5}{2}$) | C. | [$\frac{5}{2}$,4] | D. | [$\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com