精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx-p(x-1),p∈R.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+P(2x2-x-1),对任意x≥1都有g(x)≤0成立,求P的取值范围.
(1)当p=1时,f(x)=ln x-(x-1),f′(x)=
1
x
-1,
令f′(x)>0,∴x∈(0,1),
故函数f(x)的单调增区间为(0,1),单调减区间为(1,+∞);
令f′(x)<0,得x∈(1,+∞),故函数f(x)的单调减区间为(1,+∞);
(2)由题意函数g(x)=xf(x)+p(2x2-x-1)=xlnx+p(x2-1),
则xlnx+p(x2-1)≤0,
设g(x)=xlnx+p(x2-1),由于g(1)=0,
故只须g(x)=xlnx+p(x2-1)在x≥1时是减函数即可,
又因为g′(x)=lnx+2px+1,故lnx+2px+1≤0在x≥1时恒成立,
即p≤-
lnx+1
2x
在x≥1时恒成立,
由于(-
lnx+1
2x
)′=
lnx
2x
=0
时,x=1,得 当x=1时,-
lnx+1
2x
取最小值-
1
2

∴p≤-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案