精英家教网 > 高中数学 > 题目详情
已知曲线y=x2,则过点A(3,5)的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:设切点坐标,可得切线方程,将A(3,5)及y0=x02代入求出切点坐标,从而可求出切线方程.
解答: 解:∵y=x2,∴y′=2x.
设切点坐标为(x0,y0),则切线方程为y-y0=2x0(x-x0).
将A(3,5)及y0=x02代入,可得5-x02=2x0(3-x0),
解得x0=1或x0=5,
∴设切点坐标为(1,1)或(5,25),
∴曲线过点A(3,5)的切线方程为2x-y-1=0或10x-y-25=0.
故答案为:2x-y-1=0或10x-y-25=0.
点评:本题主要考查了利用导数研究曲线上某点切线方程,同时考查了计算能力和转化的思想,解曲线的切线问题要特别注意是“在”还是“过”点.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
的图象为曲线C.
(1)求曲线C:y=f(x)在点A(1,0)处的切线l的方程.
(2)证明:除切点(1,0)之外,切线l在曲线C的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
4

(Ⅰ)求f(x)在x∈[-π,0]的单调增区间;
(Ⅱ)将函数f(x)的图象向右平移
π
8
个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
π
2
]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且2Sn=9-an,bn=3-2log3an
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=
b n
a n
,求数列{cn}的前n项和Tn
(Ⅲ)证明:当n≥2时,a2nbn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2
3
cos2x+2sin(π-x)cos(-x)+a-
3
(x∈R,a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)先将函数y=f(x)的图象向右平移
π
6
个单位,然后将得到函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到y=g(x)的图象,若当x∈[
π
6
π
3
],g(x)的最小值为2,求a的值及函数y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知a1=
1
2
,an=
2-n
n
Sn,则
lim
n→∞
(S1+S2+…+Sn)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产某种产品x件的总成本c(x)=1200+
2
75
x3(万元),已知产品单价的平方与产品件数x成反比,生产100件这样的产品单价为50万元,产量定为多少时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:在平面内,点M到定圆C的圆周上任意一点的距离的最小值称为点M到定圆C的“美好距离”,若定圆P的方程:x2+y2+2x-3=0,平面内的动点F到定点A的距离等于F到定圆P的美好距离,则动点F的轨迹可能为:①椭圆②圆③双曲线的一支④直线⑤抛物线,其中可能的序号是
 
(写出所有可能的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x-y+3≥0
kx-y+3≤0
0≤x≤2
表示的平面区域是一个直角三角形,则实数k的值是
 

查看答案和解析>>

同步练习册答案