| A. | 8π | B. | 6π | C. | 11π | D. | 5π |
分析 把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的表面积.
解答 解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.
三棱锥的底面A′EF扩展为边长为1的正方形,
然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,
正四棱柱的对角线的长度就是外接球的直径,直径为:$\sqrt{1+1+4}$=$\sqrt{6}$.
∴球的半径为$\frac{\sqrt{6}}{2}$,
∴球的表面积为$4π•(\frac{\sqrt{6}}{2})^{2}$=6π.
故选:B.
点评 本题考查几何体的折叠问题,几何体的外接球的半径的求法,考查球的表面积,考查空间想象能力.
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为2π | B. | f(x)的图象关于直线x=$\frac{5π}{6}$对称 | ||
| C. | f($\frac{2π}{3}$)=-2 | D. | f(x)在[0,$\frac{π}{4}$]上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | $({\frac{1}{2},2})$ | C. | (2,+∞) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5,10,15,20,25,30 | B. | 2,4,8,16,32,48 | ||
| C. | 5,15,25,35,45,55 | D. | 1,12,34,47,51,60 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{25}$+$\frac{9{y}^{2}}{100}$=1(x≠±5) | B. | $\frac{{x}^{2}}{25}$-$\frac{9{y}^{2}}{100}$=1(x≠±5) | ||
| C. | $\frac{{y}^{2}}{25}$+$\frac{9{x}^{2}}{100}$=1(y≠±5) | D. | $\frac{{y}^{2}}{25}$-$\frac{9{x}^{2}}{100}$(y≠±5) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com