精英家教网 > 高中数学 > 题目详情
20.已知集合$P=\left\{{-\frac{1}{2},\frac{1}{3},\frac{1}{2},1,2}\right\}$,集合P的所有非空子集依次记为:M1,M2,…,M31,设m1,m2,…,m31分别是上述每一个子集内元素的乘积,(如果P的子集中只有一个元素,规定其积等于该元素本身),那么m1+m2+…+m31=5.

分析 f(x)=(x-$\frac{1}{2}$)(x+$\frac{1}{3}$)(x+$\frac{1}{2}$)(x+1)(x+2)所有子集的“乘积”之和即f(x)展开式中所有项的系数之和T-1.

解答 解:f(x)=(x-$\frac{1}{2}$)(x+$\frac{1}{3}$)(x+$\frac{1}{2}$)(x+1)(x+2)所有子集的“乘积”之和即f(x)展开式中所有项的系数之和T-1,
令x=1,则T=$\frac{1}{2}$×$\frac{4}{3}$×$\frac{3}{2}$×2×3=6,
∴T-1=5,
故答案为:5

点评 本题考查的知识点是元素与集合关系的判定,函数展开式的系数问题,转化困难,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,e为自然对数的底,则(  )
A.f($-\frac{π}{2}$)<f($\sqrt{2}$)<f(e)B.f(e)<f($-\frac{π}{2}$)<f($\sqrt{2}$)C.f(e)<f($\sqrt{2}$)<f($-\frac{π}{2}$)D.f($\sqrt{2}$)<f($-\frac{π}{2}$)<f(e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,边长为2的正方形ABCD中,点E、F分别  是AB、BC的中点,将△ADE,△EBF,△FCD分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的表面积为(  )
A.B.C.11πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,内角A,B,C的对边分别是a,b,c,且满足bcosC=a,则△ABC的形状是(  )
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(x+1)2(x-2)4的展开式中含x3项的系数为(  )
A.16B.40C.-40D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x)
②函数有2个零点
③f(x)>0的解集为(-1,0)∪(1,+∞)        
④?x1,x2∈R,都有|f(x1)-f(x2)|<2,
其中正确的命题是(  )
A.①③B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以下四个命题:
①若命题“?p”与“p或q”都是真命题,则命题q一定是真命题;
②若x≠kπ(k∈Z),则$sinx+\frac{1}{sinx}≥2$;
③?x0∈R,使$ln({x_0^2+1})<0$;
④由曲线$y=x,y=\frac{1}{x},\left|x\right|=2$围成的封闭图形的面积为$\frac{3}{2}-ln2$.
其中真命题的序号是①(把你认为真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题
(2)命题“若x2-4x+3=0,则x=3”的逆否命题为真命题
(3)“1<x<3”是“x2-4x+3<0”的必要不充分条件
(4)若命题p:?x∈R,x2+4x+5≠0,则?p:$?{x_0}∈R,{x_0}^2+4{x_0}+5=0$.
其中叙述正确的是(4).(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+alnx(a∈R,x∈[1,e]).
(1)若a=-4时,求函数f(x)的最大值及相应的x的值;
(2)讨论方程f(x)=0的根的个数.

查看答案和解析>>

同步练习册答案