精英家教网 > 高中数学 > 题目详情
14.函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]⊆D,使得f(x)在区间[a,b]的值域为[a,b],则称f(x)为“和谐函数”.现有f(x)=k+$\sqrt{x+2}$是“和谐函数”,则k的取值范围是(  )
A.(-$\frac{9}{4}$,+∞)B.[-$\frac{9}{4}$,+∞)C.(-$\frac{9}{4}$,-2]D.(-$\frac{9}{4}$,-2)

分析 由“和谐函数”的定义,及函数$f(x)=k+\sqrt{x+2}$的解析式,我们可得函数满足条件(1),即在定义域D内是单调函数,若满足条件(2)则$f(x)=k+\sqrt{x+2}$=x在区间[-2,+∞)上有两个根,利用换元法,可将条件转化为t2-t-(2+k)=0有两个非负根,结合二次方程根与系数的关系,可得关于k的不等式组,进而求出k的范围.

解答 解:∵$f(x)=k+\sqrt{x+2}$在定义域D=[-2,+∞)上为增函数
故满足条件(1)
若存在[a,b]⊆D使f(x)在x∈[a,b]值域为[a,b],
则$f(x)=k+\sqrt{x+2}$=x在区间[-2,+∞)上有两个根
令t=$\sqrt{x+2}$(t≥0)
则原方程可化为t2-t-(2+k)=0有两个非负根
即$\left\{\begin{array}{l}△=1+4(2+k)>0\\ 2+k≤0\end{array}\right.$
解得-$\frac{9}{4}$<k≤-2
故k的范围是$(-\frac{9}{4},-2]$
故选:C.

点评 本题考查的知识点是单调性的性质,其中正确理解新定义“闭函数”中的两个条件的意义,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知A(1,0),B(0,1),点C单位圆上的一点,且满足$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,则λx+y最大值小于2,则λ的范围为(  )
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)$C.$(-\sqrt{3},\sqrt{3}]$D.$(-\sqrt{3},\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,设a,b,c分别是角A,B,C所对边的边长,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则△ABC一定是(  )
A.锐角三角形B.等腰三角形
C.直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}的前n项和Sn=n2-12n+3,
(1)求{an}的通项公式;
(2)求|a1|+|a2|+…+|a20|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,过抛物线${C_1}:{x^2}=2py$上的一点Q与抛物线${C_2}:{x^2}=-2py$相切于A,B两点.若抛物线${C_1}:{x^2}=2py$的焦点F1到抛物线${C_2}:{x^2}=-2py$的焦点F2的距离为$\frac{1}{2}$
(Ⅰ)求抛物线C1的方程;
(Ⅱ)求证:直线AB与抛物线C1相切于一点P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{a+blnx}{x+1}$在点(1,f(1))处的切线方程为x+y=2.
(1)求a,b的值;
(2)对函数f(x)定义域内的任一个实数x,f(x)<$\frac{m}{{{x^2}+x}}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设命题甲:关于x的不等式x2+2ax+1>0对一切x∈R恒成立,命题乙:对数函数y=log(4-2a)x在(0,+∞)上递减,那么甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.四进制数1320(4)化为二进制数是(  )
A.111000B.1111000C.111200D.111100

查看答案和解析>>

同步练习册答案