精英家教网 > 高中数学 > 题目详情
2.数列{an}的前n项和Sn=n2-12n+3,
(1)求{an}的通项公式;
(2)求|a1|+|a2|+…+|a20|的值.

分析 (1)运用数列的通项和求和的关系:当n=1时,a1=S1,当n>1时,an=Sn-Sn-1,计算即可得到所求通项;
(2)运用等差数列的求和公式,计算即可得到.

解答 解:(1)当n=1时,a1=S1=4-12=-8,
当n>1时,an=Sn-Sn-1=n2-12n+3-(n-1)2+12(n-1)-3
=2n-13,
则an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-13,n≥2}\end{array}\right.$;
(2)|a1|+|a2|+…+|a20|=8+(9+7+5+3+1)+(1+3+5+…+27)
=8+$\frac{1}{2}$×(1+9)×5+$\frac{1}{2}$×(1+27)×14=229.

点评 本题考查数列的通项和求和的关系,考查等差数列的求和公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.从一群游戏的小孩中抽出k人,一人分一个苹果,让他们返回继续游戏,一段时间后,再从中任取m人,发现其中有n个小孩曾分过苹果,估计一共有小孩多少人(  )
A.k•$\frac{m}{n}$B.k•$\frac{n}{m}$C.k+m-nD.不能估计

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}为等差数列,{an}的前n项和为sn,a1=1,a3=5.
(1)求an与sn
(2)若数列{bn}为等比数列,且b1=a1,b2=a2,求bn及数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=log37,b=21.1,c=0.81.1则(  )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果把一个球的表面积扩大到原来的2倍,变为一个新球,那么新球的体积扩大到原来的λ倍,则(  )
A.λ∈(0,1)B.λ∈(1,2)C.λ∈(2,3)D.λ∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是(  )
A.若m∥α,n⊥β,且α⊥β,则m∥nB.若α∥β,m?α,n?β,则m∥n
C.若m⊥α,n⊥β,m⊥n,则α⊥βD.若m⊥n,m?α,n?β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]⊆D,使得f(x)在区间[a,b]的值域为[a,b],则称f(x)为“和谐函数”.现有f(x)=k+$\sqrt{x+2}$是“和谐函数”,则k的取值范围是(  )
A.(-$\frac{9}{4}$,+∞)B.[-$\frac{9}{4}$,+∞)C.(-$\frac{9}{4}$,-2]D.(-$\frac{9}{4}$,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在三棱锥P-ABC中,平面PAB⊥平面ABC,CA⊥平面PAB,PA=PB=AB=2$\sqrt{3}$,AC=4,则三棱锥P-ABC的外接球的表面积为(  )
A.24πB.32πC.48πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:所有有理数都是实数;命题q:?x∈R,sinx=$\frac{\sqrt{5}}{2}$,则下列命题中为真命题的是(  )
A.¬p∨qB.p∧qC.¬p∧¬qD.¬p∨¬q

查看答案和解析>>

同步练习册答案