精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,四边形四边均相等,点在面的射影为中点

(1)证明:

(2),求点到面的距离

【答案】(1)见解析;(2).

【解析】

(1)由点在面的射影为中点可得由菱形的性质可得,利用线面垂直的判定定理可得平面,从而可得结果;(2)在平面内作,垂足为,连接,在平面内作,垂足为可证明平面,进而可得结果

(1)证明 连接BC1,则OB1CBC1的交点.

因为侧面BB1C1C为菱形,所以B1CBC1

AO⊥平面BB1C1C,所以B1CAO

B1C⊥平面ABO

由于AB平面ABO,故B1CAB

(2)在平面BB1C1C内作ODBC,垂足为D,连接AD

在平面AOD内作OHAD,垂足为H

由于BCAOBCOD

BC⊥平面AOD,所以OHBC

OHAD

所以OH⊥平面ABC

因为∠CBB1=60°,所以△CBB1为等边三角形.

BC=1,可得.由于ACAB/span>1,所以

OH·ADOD·OA,且,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若lg(3x)+lg y=lg(x+y+1),则xy的最小值为(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

先根据对称的运算性质化简得到3xy=x+y+1,再根据基本不等式即可求出答案.

∵lg(3x)+lgy=lg(3xy)=lg(x+y+1),x>0,y>0,

∴3xy=x+y+1,

∴3xy≥3,当且仅当x=y=1时取等号,

即xy≥1,

xy的最小值是1,

故选:A

【点睛】

在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误

型】单选题
束】
12

【题目】已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,AB=5 , ∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的长;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣alnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)当a>0时,若f(x)的最小值为1,求a的值;
(3)设g(x)=f(x)﹣2x,若g(x)在[]有两个极值点x1 , x2(x1<x2),证明:g(x1)﹣g(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的一个焦点为,对应于这个焦点的准线方程为

(1)写出抛物线的方程;

(2)过点的直线与曲线交于两点,点为坐标原点,求重心的轨迹方程;

(3)点是抛物线上的动点,过点作圆的切线,切点分别是.点在何处时,的值最小?求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】箱中有6张卡片,分别标有1,2,3,…,6。

(1)抽取一张记下号码后不放回,再抽取一张记下号码,求两次之和为偶数的概率;

(2)抽取一张记下号码后放回,再抽取一张记下号码,求两个号码中至少一个为偶数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:2x-y+6=0和直线l2:x=-1,F是抛物线C:y2=4x的焦点,点P在抛物线C上运动,当点P到直线l1和直线l2的距离之和最小时,直线PF被抛物线所截得的线段长是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+)(x∈R)的图象上所有点的纵坐标不变横坐标缩小到原来的 , 再把图象上各点向左平移个单位长度,则所得的图象的解析式为( )
A.y=sin(2x+
B.y=sin(x+
C.y=sin(2x+
D.y=sin(x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率

(I)求椭圆的标准方程;

(II)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围

查看答案和解析>>

同步练习册答案