精英家教网 > 高中数学 > 题目详情
已知z=
1+i
1-i
,其中i是虚数单位,则z+z2+z3+…+z2012的值为(  )
A、1+iB、1-iC、iD、0
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:利用复数的代数形式的运算性质可得z=i,利用等比数列的求和公式计算即可.
解答: 解:∵z=
1+i
1-i
=
(1+i)2
(1-i)(1+i)
=
2i
2
=i,
∴z+z2+z3+…+z2012=
z(1-z2012)
1-z
=
i(1-i2012)
1-i
=
i(1-1)
1-i
=0,
故选:D.
点评:本题考查复数代数形式的混合运算,求得z=i是关键,考查等比数列的求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上. 若平面AEC⊥平面PBC,求E点位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(θ)=
cos(θ-
2
)sin(
3
+θ)
sin(-θ-π)

(1)化简f(θ);
(2)若f(θ)=
1
3
,求tanθ的值;
(3)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知多项式函数f(x)的导数f′(x)=x2+4x,f(-3)=10,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log 
1
2
[2sin(2x+
π
4
+
2
]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知大西北某荒漠上A、B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km.
(1)试求四边形另两个顶点的轨迹方程;
(2)问农艺园的最大面积能达到多少?
(3)该荒漠上有一条直线型小溪l刚好通过点A,且l与AB成30°角,现要对整条水沟进行加固改造,但考虑到今后农艺园的水沟要重新设计改造,因此,对水沟可能被农艺园围进的部分暂不加固,则暂不加固的部分有多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点P(3,2)的圆C的圆心在y轴的负半轴上,且圆C截直线l:2x-y+3=0所得弦长为4
5
,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明:cos2α+cos2β=2cos(α+β)cos(α-β);
(2)在△ABC中,若A=
π
3
,求sin2B+sin2C的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程
x2
4
+
y2
2
=1及椭圆上一点P(x0,y0),P关于y=2x的对称点(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

同步练习册答案