精英家教网 > 高中数学 > 题目详情
8.如图,已知△ABC中,B=90°,∠C的平分线交AB于D,以AD为直径的圆O交AC于点E、交CD于点F.
(1)求证:AE•AC=AD•AB;
(2)若BD=1,BC=$\sqrt{3}$,求点F到线段AC的距离.

分析 (1)连接DE,则∠DEC=90°,证明C,E,D,B四点共圆,利用切割线定理证明AE•AC=AD•AB;
(2)若BD=1,BC=$\sqrt{3}$,求出CF,即可求点F到线段AC的距离.

解答 证明:(1)连接DE,则∠DEC=90°,
∵∠B=90°,
∴C,E,D,B四点共圆,
∴AE•AC=AD•AB;
解:(2)若BD=1,BC=$\sqrt{3}$,
则∠DCB=30°,∠ACB=60°,
∴AC=2$\sqrt{3}$,CE=$\sqrt{3}$,CD=2,
∵CE•CA=CD•CF,
∴CF=3,
∴点F到线段AC的距离为$\frac{3}{2}$.

点评 本题主要考查与圆有关的比例线段和切割线定理,证明乘积式的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知函数log${\;}_{\frac{1}{2}}$(x2-2x+a)的定义域为R,求实数a的取值范围.
(2)已知函数y=log${\;}_{\frac{1}{2}}$(x2-2x+a)的值域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点,
(1)求证:直线AE∥平面BDC1
(2)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求点C到平面BDC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△ABC中,∠ABC=90°,∠C=30°,AB=1,D为AC中点,AE⊥BD于点E,延长AE交BC于点F,沿BD将△ABC折成四面体A-BCD.
(1)若M是FC的中点,求证:直线DM∥平面AEF;
(2)若cos∠AEF=$\frac{1}{3}$,求点D到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=ax3+bx2+cx+d有两个极值点x1,x2,若点P(x1,f(x1))为坐标原点,点Q(x2,f(x2))在圆C:(x-2)2+(y-3)2=1上运动时,则函数f(x)图象的切线斜率的最大值为(  )
A.3+$\sqrt{2}$B.2+$\sqrt{3}$C.2+$\sqrt{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln$\frac{1}{2x}$-ax2+x,
(1)讨论函数f(x)的极值点的个数;
(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-4ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆O:x2+y2=4上到直线l:x+y=m的距离为1的点有且仅有2个,则m的取值范围是(  )
A.$({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$B.(-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$)C.$(-3\sqrt{2},3\sqrt{2})$D.$(-\sqrt{2},\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知命题:“平面内$\overrightarrow{OA}$与$\overrightarrow{OB}$是一组不平行向量,且|$\overrightarrow{OA}}$|=|${\overrightarrow{OB}}$|=1,$\overrightarrow{OA}⊥\overrightarrow{OB}$,则任一非零向量$\overrightarrow{OP}$,$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$(λ1,λ2∈R),若点P在过点O(不与OA重合)的直线l上,则$\frac{λ_1}{λ_2}$=k(定值),反之也成立,我们称直线l为以$\overrightarrow{OA}$与$\overrightarrow{OB}$为基底的等商线,其中定值k为直线l的等商比.”为真命题,则下列结论中成立的是①③④⑤(填上所有真命题的序号).
①当k=1时,直线l经过线段AB中点;
②当k<-1时,直线l与AB的延长线相交;
③当k=-1时,直线l与AB平行;
④l1⊥l2时,对应的等商比满足k1•k2=-1;
⑤直线l1与l2的夹角记为θ(θ≠$\frac{π}{2}}$)对应的等商比为k1、k2,则tanθ=$\frac{{|{{k_1}-{k_2}}|}}{{|{1+{k_1}{k_2}}|}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.行列式中$|\begin{array}{l}{6}&{-3}&{1}\\{2}&{5}&{k}\\{1}&{4}&{-2}\end{array}|$中元素-3的代数余子式的值为7,则k=3.

查看答案和解析>>

同步练习册答案