精英家教网 > 高中数学 > 题目详情

【题目】正方体的棱长为2,分别为的中点,则(

A.直线与直线垂直B.直线与平面平行

C.平面截正方体所得的截面面积为D.与点到平面的距离相等

【答案】BC

【解析】

A.利用线面垂直的定义进行分析;

B.作出辅助线利用面面平行判断;

C.作出截面然后根据线段长度计算出截面的面积;

D.通过等体积法进行判断.

A.若,又因为,所以平面

所以,所以,显然不成立,故结论错误;

B.如图所示,取的中点,连接

由条件可知:,且,所以平面平面

又因为平面,所以平面,故结论正确;

C.如图所示,连接,延长交于点

因为的中点,所以,所以四点共面,

所以截面即为梯形,又因为

所以,所以,故结论正确;

D.记点与点到平面的距离分别为

因为

又因为

所以,故结论错误.

故选:BC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日”。其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升,共发出大米40392升,问修筑堤坝多少天”,在该问题中前5天共分发了多少大米?

A. 1170升 B. 1380升 C. 3090升 D. 3300升

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间口罩需求量大增,某医疗器械公司开始生产KN95口罩,并且对所生产口罩的质量按指标测试分数进行划分,其中分数不小于70的为合格品,否则为不合格品,现随机抽取100件口罩进行检测,其结果如下:

1)根据表中数据,估计该公司生产口罩的不合格率;

2)根据表中数据,估计该公司口罩的平均测试分数;

3)若用分层抽样的方式按是否合格从所生产口罩中抽取5件,再从这5件口罩中随机抽取2件,求这2件口罩全是合格品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处的切线与直线平行.

1)求的值并讨论函数上的单调性;

2)若函数为常数)有两个零点

①求实数的取值范围;

②求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用合适的方法表示下列集合,并说明是有限集还是无限集.

1)到AB两点距离相等的点的集合

2)满足不等式的集合

3)全体偶数

4)被5除余1的数

520以内的质数

6

7)方程的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求)时,每小时的油耗(所需要的汽油量)为升,其中为常数,且

(1)若汽车以千米/小时的速度行驶时,每小时的油耗为升,欲使每小时的油耗不超过升,求的取值范围;

(2)求该汽车行驶千米的油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 其中为常数.

(1)当求函数的单调区间及极值

(2)已知 ,若函数有2个零点 有6个零点,试确定的值.

查看答案和解析>>

同步练习册答案