【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量(百台) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程,其中,.
【答案】(1);2.16(百台);(2)
【解析】
(1)由题意计算平均数与回归系数,写出线性回归方程,再利用回归方程计算对应的函数值;
(2)利用分层抽样法求得抽取的对应人数,用列举法求得基本事件数,再计算所求的概率值.
(1)因为,
所以,则,
于是关于的回归直线方程为.
当时,(百台).
(2)现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,则购买意愿为7月份的抽4人记为,,,,购买意愿为12月份的抽2人记为,,
从这6人中随机抽取3人的所有情况为、、、、、、、、、、、、、、、、、、、,共20种,
恰好有2人是购买意愿的月份是12月的有、、、,共4种,
故所求概率为.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直线与平面所成角的正弦值;
(2)若点M,N分别在AB,PC上,且平面,试确定点M,N的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】底面为菱形的直棱柱
中,
分别为棱
的中点.
(1)在图中作一个平面
,使得
,且平面
.(不必给出证明过程,只要求作出
与直棱柱
的截面).
(2)若
,求平面
与平面
的距离
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,过点的直线交椭圆于两点,为坐标原点.
(1)若的斜率为,为的中点,且的斜率为,求椭圆的方程;
(2)连结并延长,交椭圆于点,若椭圆的长半轴长是大于的给定常数,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四名同学在回忆同一个函数,甲说:“我记得该函数定义域为,还是奇函数”.乙说:“我记得该函数为偶函数,值域不是”.丙说:“我记得该函数定义域为,还是单调函数”.丁说:“我记得该函数的图象有对称轴,值域是”,若每个人的话都只对了一半,则下列函数中不可能是该函数的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(1)求的值;
(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为,求的分布列及数学期望;
(3)设函数(其中表示的方差)是评估安全教育方案成效的一种模拟函数.当时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com