精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数

(Ⅰ)已知常数解关于的不等式

(Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)去掉绝对值结合即可求出不等式的解集;(Ⅱ)函数的图像恒在函数图像的上方,转化为恒成立,分离参变量,利用绝对值不等式求出函数的最值,进而求得参数的范围.

试题解析:(Ⅰ)由,所以

所以,故不等式解集为

(Ⅱ)因为函数的图像恒在函数图像的上方,所以恒成立,则恒成立,因为,所以的取值范围是

点睛:本题考查解不等式以及由恒成立问题转化的含绝对值函数的最值问题,属于基础题目. 对绝对值三角不等式:|a|-|b|≤|a±b|≤|a|+|b|.(1)当ab≥0时,|ab|=|a|+|b|;当ab≤0时,|ab|=|a|+|b|.(2)该定理可以推广为|abc|≤|a|+|b|+|c|,也可强化为||a|-|b||≤|a±b|≤|a|+|b|,它们经常用于含绝对值的不等式的推证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是增函数,求实数的取值范围;

(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分) 已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 为何值时, .①有且仅有一个零点;②有两个零点且均比-1大;

(2)若函数有4个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A={x|x2+8x=0},B={x|x2+2(a+2)xa2-4=0},其中a∈R.如果ABB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.

(1)若=6,求k的值;

(2)求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区工商局、消费者协会在号举行了以携手共治,畅享消费为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率;

)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中公差d≠0,有a1+a4=14,且a1a2a7成等比数列.

(Ⅰ)求{an}的通项公式an与前n项和公式Sn

(Ⅱ)令bn= (k<0),若{bn}是等差数列,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,两焦点,点在椭圆上.

(1)求椭圆的方程;

(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且.求四边形面积的最大值.

查看答案和解析>>

同步练习册答案