精英家教网 > 高中数学 > 题目详情
17.由曲线y2=2x和直线y=x-4所围成的图形的面积(  )
A.18B.19C.20D.21

分析 先求出曲线y2=2x 和直线y=x-4的交点坐标,从而得到积分的上下限,然后利用定积分表示出图形面积,最后根据定积分的定义求出即可.

解答 解:由曲线y2=2x和直线y=x-4,解得曲线y2=2x 和直线y=x-4的交点坐标为:(2,-2),(8,4)
选择y为积分变量,
∴由曲线y2=2x 和直线y=x-4所围成的图形的面积S=${∫}_{-2}^{4}$(y+4-$\frac{1}{2}$y2)dy=($\frac{1}{2}$y2+4y-$\frac{1}{6}$y3)|-24=18,
故选:A.

点评 本题主要考查了定积分在求面积中的应用,以及会利用定积分求图形面积的能力.应用定积分求平面图形面积时,积分变量的选取是至关重要的,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在几何体ABCDE中,∠BAC=$\frac{π}{2}$,DC⊥平面ABC,EB⊥平面ABCF是BC的中点,AB=AC=BE=2,CD=1.求证:
(1)DC∥平面ABE;
(2)AF⊥平面BCDE;
(3)求二面角D-AF-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在递减数列{an}中,an=-2n2+λn,求实数λ的取值范围是(  )
A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二面角E-AF-D的二面角的余弦值;
   ②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二次函数f(x)=2x2+1,过点(1,0)做直线l1,l2与f(x)的图象相切于A,B两点,则直线AB的方程为(  )
A.$\sqrt{6}$x-y+2=0B.x-$\sqrt{6}$y+1=0C.4x-y+2=0D.x-4y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|-1≤x≤3},B={x|x>2},则A∩B=(  )
A.{x|2<x≤3}B.{x|x≥-1}C.{x|2≤x<3}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A(xA,yA)是单位圆上(圆心在坐标原点O)任意一点,且射线OA绕O点逆时针旋转30°到OB交单位圆于点B(xB,yB),则xA-yB的最大值为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(2,3)、B (-5,2),若直线l过点P (-1,6),且与线段AB相交,则直线l斜率的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为(  )
A.-$\frac{7\sqrt{2}}{10}$B.$\frac{7\sqrt{2}}{10}$C.-$\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

同步练习册答案