精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)∈{sinx,|log2x|,log2|x|,${x^{\frac{1}{2}}}}$},且f(x)为偶函数.
(Ⅰ)写出满足条件的函数f(x)的解析式(不用说明理由);
(Ⅱ)设函数g(x)=m•2f(x)+x2(m∈R);
①若函数g(x)在区间(-∞,-2)上是减函数,求实数m的取值范围;
②当m>$\frac{1}{4}$时,判断g(x)>$\frac{x}{4}+\frac{1}{x}$在x∈[1,2]上是否恒成立,并说明理由.

分析 (Ⅰ)直接由基本初等函数的性质可得f(x)=log2|x|为偶函数;
(Ⅱ)①由(Ⅰ)知,$g(x)=m•{2^{{{log}_2}|x|}}+{x^2}={x^2}+m•|x|$,取绝对值,利用二次函数的对称轴$\frac{m}{2}≥-2$求实数m的取值范围;
②由$g(x)>\frac{x}{4}+\frac{1}{x}$,可得x2+m|x|$>\frac{x}{4}+\frac{1}{x}$.去绝对值得x2+mx$>\frac{x}{4}+\frac{1}{x}$,即4x3+(4m-1)x2-4>0.由m>$\frac{1}{4}$,可得函数F(x)=4x3+(4m-1)x2-4(1≤x≤2)为增函数,从而得到当$m>\frac{1}{4}$时,$g(x)>\frac{x}{4}+\frac{1}{x}$在x∈[1,2]上恒成立.

解答 解:(Ⅰ)由题意,f(x)=log2|x|,…(3分)
(Ⅱ)①由(Ⅰ)知,$g(x)=m•{2^{{{log}_2}|x|}}+{x^2}={x^2}+m•|x|$,
当x∈(-∞,-2),此时g(x)=x2-mx.
若函数g(x)在区间(-∞,-2)上是减函数,则$\frac{m}{2}≥-2$,∴m≥-4;…(6分)
②由$g(x)>\frac{x}{4}+\frac{1}{x}$,可得x2+m|x|$>\frac{x}{4}+\frac{1}{x}$.
若x∈[1,2],则x2+mx$>\frac{x}{4}+\frac{1}{x}$,
整理得,4x3+(4m-1)x2-4>0.…(8分)
因此问题转化为:
当$m>\frac{1}{4}$时,4x3+(4m-1)x2-4>0在x∈[1,2]上是否恒成立.…(9分)
令F(x)=4x3+(4m-1)x2-4(1≤x≤2),
当$m>\frac{1}{4}$时,则4m-1>0,可判断出函数F(x)在x∈[1,2]单调递增.
∴F(x)≥F(1)=4m-1>0.
因此,当$m>\frac{1}{4}$时,4x3+(4m-1)x2-4>0在x∈[1,2]上恒成立.
∴当$m>\frac{1}{4}$时,$g(x)>\frac{x}{4}+\frac{1}{x}$在x∈[1,2]上恒成立.…(12分)

点评 本题考查函数恒成立问题,考查对数函数的性质,考查数学转化思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在直三棱柱ABC-A1B1C1中,AA1=AB=BC=2,$∠ABC=\frac{π}{2}$,E,F分别为棱AB,AC的中点,则直线A1E和C1F的夹角余弦值为(  )
A.$\frac{{\sqrt{30}}}{10}$B.$\frac{{\sqrt{30}}}{6}$C.$\frac{{\sqrt{10}}}{6}$D.$\frac{{2\sqrt{30}}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{6}}{3}$,坐标原点O到过点A(0,-b)和B(a,0)的直线的距离为$\frac{\sqrt{3}}{2}$.又直线y=kx+m(k≠0,m≠0)与该椭圆交于不同的两点C,D.且C,D两点都在以A为圆心的同一个圆上.
(1)求椭圆的方程;
(2)当k=$\frac{\sqrt{6}}{3}$时,求m的值,以及此时△ACD面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜边AB=4,D是AB中点,现将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
(1)求圆锥的侧面积;
(2)求直线CD与平面BOC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用秦九韶算法计算多项式f(x)=2x4-x3+3x2+7,在求x=3时对应的值时,v3的值为54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A.B两点.若AB的中点坐标为(1,-$\frac{\sqrt{5}}{5}$),则E的方程为(  )
A.$\frac{{x}^{2}}{10}$+y2=1B.$\frac{{x}^{2}}{19}$+$\frac{{y}^{2}}{10}$=1C.$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$y=cos({4x+\frac{π}{3}})$的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若点P在圆${C_1}:{(x-2)^2}+{(y-2)^2}=1$上,点Q在圆${C_2}:{(x+2)^2}+{(y+1)^2}=4$上,则|PQ|的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.ω=2,$φ=\frac{π}{6}$B.$ω=\frac{1}{2}$,$φ=\frac{π}{6}$C.ω=2,$φ=\frac{π}{3}$D.$ω=\frac{1}{2}$,$φ=\frac{π}{3}$

查看答案和解析>>

同步练习册答案