分析 (1)将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,qj 圆锥的侧面积S侧=πrl=2×4×π=8π.
(2)取OB的中点E,连结DE、CE,说明∠DCE是直线CD与平面BOC所成的角,在Rt△DEC中,求解即可.
解答 解:(1)∵在Rt△AOB中,$∠OAB=\frac{π}{6}$,斜边AB=4,D是AB中点,
将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
∴圆锥的侧面积S侧=πrl=2×4×π=8π.![]()
(2)取OB的中点E,连结DE、CE,
则DE∥AO,∴DE⊥平面BOC,
∴∠DCE是直线CD与平面BOC所成的角,
在Rt△DEC中,CE=$\sqrt{5}$,DE=$\sqrt{3}$,
tan∠DCE=$\frac{\sqrt{3}}{\sqrt{5}}$=$\frac{\sqrt{15}}{5}$,
∴$∠DCE=arctan\frac{\sqrt{15}}{5}$.
∴直线CD与平面BOC所成角的大小为arctan$\frac{\sqrt{15}}{5}$.
点评 本题考查旋转体的表面积的求法,直线与平面所成角的求法,考查空间想象能力逻辑推理能力以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | y=cos(2x+$\frac{π}{2}$) | B. | y=|sin(x+$\frac{π}{3}$)| | C. | y=2cos2x-3 | D. | y=-tan2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com