已知函数
.
(1)当
时,讨论函数
的单调性;
(2)当
时,在函数
图象上取不同两点A、B,设线段AB的中点为
,试探究函数
在Q
点处的切线与直线AB的位置关系?
(3)试判断当
时
图象是否存在不同的两点A、B具有(2)问中所得出的结论.
(1)
时,函数
在
上单调递增;当
,函数
在
和
上单调递增;在
上单调递减;(2)所以函数Q点处的切线与直线AB平行;
(3)
图象不存在不同的两点A、B具有(2)问中所得出的结论.
解析试题分析:(1)求导即可知其单调性;(2)利用导数求出函数
在点Q
处的切线的斜率,再求出直线AB的斜率,可看出它们是相等的,所以函数在Q点处的切线与直线AB平行;
(3)设![]()
,若
满足(2)中结论,则有
,化简得
(*).如果这个等式能够成立,则存在,如果这个等式不能成立,则不存在.设
,则*式整理得
,问题转化成该方程在
上是否有解.再设函数
,下面通过导数即可知方程
在
上是否有解,从而可确定函数
是否满足(2)中结论.
(1)由题知
,
当
即
时,
,函数
在定义域
上单调递增;
当
,由
解得
,函数
在
和
上单调递增;在
上单调递减; 4分
(2)
,
,![]()
所以函数Q点处的切线与直线AB平行; .7分
(3)设![]()
,若
满足(2)中结论,有
,即![]()
即
(*) .9分
设
,则*式整理得
,问题转化成该方程在
上是否有解; 11分
设函数
,则
,所以函数
在
单调递增,即
,即方程
在
上无解,即函数
不满足(2)中结论 14分
考点:导数的应用.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax-ln x,g(x)=
,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+
对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)当a=1时,求曲线
在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的值;
(3)若对任意
,且
恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=(x-a)(x-b)2,a,b是常数.
(1)若a≠b,求证:函数f(x)存在极大值和极小值;
(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-
,求函数f(x)和f′(x)的公共递减区间的长度;
(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)(2011•天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)求
在区间
上的最大值;
(2)若过点
存在3条直线与曲线
相切,求t的取值范围;
(3)问过点
分别存在几条直线与曲线
相切?(只需写出结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com